CODE TIME TECHNOLOGIES

Abassi RTOS

GPIO Support

Copyright Information

This document is copyright Code Time Technologies Inc. ©2018-2019 All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS GPIO Support 2019.03.05
Table of Contents

1 INTRODUCTION 6
1.1 DISTRIBUTION CONTENTS ...vveiieieiutireeeeeeiureeeeeeiireeeeeeieiseseeeeesssseseeesssseseseesireseeeseessssssesessissseeseessisnes 6
1.2 FEATURESutttiii ettt eeeee et e eeetee e e ettt e e e e et e e e e e e eeaaa e e e e eetaabeeeeeeasaeeeeeeeateseeeeentsseeeeeessssseeeeennnrees 6
1.3 LIMITATIONS ..ooeiiieiiteeeeeeeeteee e e e eeettte e e e e eetaaeeeeeeeaaeeeeeeeeaaeeeeeeeettaseeeeeaasseeeeeeeareseeeeeatsseeeeeessasseeeeeanarees 6

2 TARGET SET-UP 7
2.1 BUILD OPTIONSttttiieeeeiitteeeeeeiitteeeeeeettteeeeeeeetteeeeeeeeettateeeeesttsseeeeeaetssaeeeeeastaseeeeeessseseseeasrseeeeennrres 7
2,11 OS PLATFORM ..ottt ettt ettt ettt ettt et e ennee e 8
2,12 GPIO _USE ISRoooooooeeeooeeeeeeeeeeeeeeeeo oo 8
2.1.3 GPIO ARG CHECKoo..oooooovoeoeoeeeeoeeeoeeeeeeeeeeee e 8
2.1.4 GPIO _MULTIPLE DRIVER......cccoitiiiiiieie ettt ettt ettt ettt 8
2.1.5 GPIO FPGA ADDR Ncoo.cooooooooooeoeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 8

3 MODEL 9
4 MULTIPLE DRIVERS 10
5 API 14
S.Lil @PIO Cf e e 15
5.1.2 @PIO T e 17
5.1.3 @PEO GOl e 18
5.104 @PIO DANK Geft.........c..ccoiiiiiiiiii e 19
5015 @PIO GMIE ..o e 20
5.100 @PIO SEL ..ot 21
5.1.7 @PIO DANK SOF ...t 22
5.1.8 GPIOINIHRAL..............cooooioeeeeeeeee et 23
51,9 GPIOIMIHRAL M.ttt 24

6 REFERENCES 25
7 REVISION HISTORY 26

Rev 1.3

Page 3

Abassi RTOS GPIO Support 2019.03.05

List of Figures

Rev 1.3 Page 4

Abassi RTOS GPIO Support 2019.03.05

List of Tables

TABLE 1-1 DISTRIBUTION.......cceittteittieeirteesireeeeseeeseseeesssesesssssessssesssssssssssssessssessssssssssssssasssesssssssssssesassssessssses 6
TABLE 2-1 BUILD OPTIONS ...eeeutiieiittieeitteesirteeeteeeestseeesssesesssssesssssassssssssssssessssessssssssssssssasssessssssssssessssssessssses 7
TABLE 2-2 FPGA GPIO MODULE EXAMPLEc.uutiiiittieeiiiieeetieeeitteeesreeessseeesssseessssseesssesassssesssssssssssessssssesssssens 8
TABLE 4-1 APIREMAPPINGcuuttiiiutieeitieeetteeetteeatseeastseeesseaeasssesasssesesssesasssssessssssssssesssssesessssessssssessssessnssees 10
TABLE 4-2 MULTIPLE GPIO WRAPPER EXAMPLE (GPTI0 ¢ C).uvvreeuriieeiureeerireeeareeesnseesseseessssesesssesssssesssssessnsses 11
TABLE 4-3 MULTIPLE GPIO WRAPPER EXAMPLE (GPIO0 ¢ H) uvveeeuviieeiereeesireeenreeessseesseseeesssesessseesssesssssessnsses 13

Rev 1.3 Page 5

Abassi RTOS GPIO Support 2019.03.05

1 Introduction
This document describes the GPIO driver used by Abassi' [R1] (including mAbassi [R2] and pAbassi
[R3]). The standalone version of the GPIO driver is also described here.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

???_gpio.h Include file for the GPIO driver (??? is target dependent)
???_gpio.c “C” file for the GPIO driver (??? is target dependent)
SAL.h Include file for the standalone abstraction layer (supplied

with standalone package only)

SAL.c “C” file for the standalone abstraction layer (supplied with
standalone package only)

ISRhandler_???.s “ASM” add-on file for the standalone version. It contains
support for both the driver and the demo application
(supplied with standalone package only)

1.2 Features

The GPIO driver API and build options are kept the same across all target platforms. Target specific extra
functionality is not described in this document; refer to the code itself. All GPIO APIs, except the
initialization, can be used in interrupt handlers. When the target platform is a SoC FPGA, it is likely the
manufacturer’s FPGA IP GPIO modules are also supported in extra of the core processor GPIOs. All
GPIO drivers can be set-up to be part of a multi-driver set-up.

1.3 Limitations

Some controllers cannot support some of the features described in this document. Please refer to the header
in specific driver code for a description / list of these limitations. This is described near the top of the files:
??? gpio.hand ?2??_ gpio.c.

' When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi
and pAbassi.

Rev 1.3 Page 6

Abassi RTOS GPIO Support 2019.03.05

2 Target Set-up

All there is to do to configure and enable the use of the GPIO driver in an application based on Abassi is to
include the following file in the build:

» ?2? gpio.c (For Abassi & standalone)
» SAL.c (For Standalone)
» ISRhandler_22??.s (For Standalone)

and to set-up the include search directory order making sure the file ??2?_gpio.h is found (and SAL.h for
the standalone)

If interrupts are used, one or multiple GPIO interrupt handlers (QSPIintHndl_n(), Section 5.1.9) must be
attached to the interrupt controller. In Abassi this is simply done using the 0OSisrInstall() component.

The GPIO driver may or may not, depending on the target platform, be independent from other include
files.

2.1 Build Options

There are a few build options that allow the GPIO driver to be configured for the needs of the target
application. The following table lists all of them there is an alternate token naming, refer to section 4) :

Table 2-1 Build Options

Token Name Default Description

O0S_PLATFORM Target dependent Number indicating the target platform.
Referto 2??_i2c.h and Platform.h to
see the list of supported platforms and the
default one.

GPIO_USE_ISR 1 Boolean to enable/disable the handling of
ISR from the GPIO controller
GPIO_ARG_CHECK 1 Boolean to enable/disable the check on the
validity of the API function arguments
GPIO_MULTIPLE_DRIVER 0 To use drivers for different GP1IO
controllers at the same time.
GPIO_FPGA_ADDR_N Target dependent Base address of FPGA GPIO controllers. N

can have the value 1 to 10

Rev 1.3 Page 7

Abassi RTOS GPIO Support 2019.03.05

211 OS_PLATFORM

The build option 0S_PLATFORM informs the GPIO driver about the platform it is operating on. It is needed
to inform the GPIO driver implicitly knows the total number of GPIO banks and I/O pins on the target
platform.

The information on the numbering used for 0S_PLATFORM is available in the Platform.txt and
Platform.h files also supplied as part of the distribution.

2.1.2 GPIO_USE_ISR

The build option GPIO_USE_ISR informs the driver if it supports GPIO interrupts or not. This is a
Boole\an, when set to non-zero value, it includes the code to handle interrupts, and when set to a zero it
does not include it. By default, GPIO_USE_ISR is set to a non-zero value meaning the code to handle
GPIO interrupt is included.

2.1.3 GPIO_ARG_CHECK

The build options GPIO ARG _CHECK controls if the driver checks the validity of the API function
arguments or not. This build option is a Boolean; when set to a non-zero value, the driver checks the
validity of the arguments and returns an error code when the arguments are invalid. When set to a zero
value, it does not check the validity of the arguments. By default, GPIO ARG _CHECK is set to a non-zero
value meaning the code check the validity of the arguments.

2.1.4 GPIO_MULTIPLE_DRIVER

See section 4.

2.1.5 GPIO_FPGA_ADDR_N

When the target platform is a SoC FPGA, it is likely the GPIO driver has support for GPIO modules added
in the FPGA fabric. The build options GPIO_FPGA_ADDR_N (N can have the value 1 to 10) specifies the
base address in the memory space of the processor of up to ten (10) FPGA GPIO controllers. The
numbering (N in the build option name) must start at 1 and be contiguous. By default, none of the ten (10)
GPIO_FPGA ADDR_N build options are defined.

For example, if two GPIO modules are added in the FPGA fabric and the base addresses of the modules are
respectively 0xFC300000 and 0xFC301000, then these 2 build options must be defined with these values:

Table 2-2 FPGA GPIO module example

Build Option Name Value Description

GPIO_FPGA_ADDR_1 0xFC300000 FPGA GPIO module located at address
0xFC300000. The I/O pin numbers for that
module start at 1000

GPIO_FPGA_ADDR_2 0xFC301000 FPGA GPIO module located at address
0xFC301000. The I/O pin numbers for that
module start at 2000

Rev 1.3 Page 8

Abassi RTOS GPIO Support 2019.03.05

3 Model

GPIO controllers with many 10 pins are commonly broken down into 16 or 32 bit wide individual
controllers or regions, called in here “banks”. To increase the portability and simplify the API, only I/O pin
numbers, starting at 0 and incrementing contiguously, are used; bank numbers are never used in the driver
interface. Refer to the header of the code itself for the mapping between the I/O pin numbers and pair of
banks and I/O numbers.

When the build option(s) GPIO_FPGA ADDR N is (are) used, the individual FPGA controller 1/O pin
numbers start on exact multiple of 1000. For example, for the controller at address GPIO_FPGA ADDR_1,
the first IO pin number is 1000, next IO pin is 1001, etc. For the controller at address GPIO_FPGA ADDR_2,
the first IO pin number is 2000, etc up to 10000 for GPTO0_FPGA_ADDR_10. The drivers have no provisions
to check the validity of an I/O pin number for a FPGA module. For example, if a FPGA module with 32
/O pins is declared with GPIO_FPAG_ADDR_1, then any I/O pin value between 1000 and 1999 specified in
the API argument will access that module. Using an invalid I/O pin number will either do nothing or crash
the application. The checking of the wvaliditiy of the argument (enable with the build option
GPIO_ARG_CHECK) only applied to non-FPGA 1/O pins.

When interrupts are supported with the build option GPIO_USE_ISR set to a non-zero value, the application
must provide an interrupt call back function (This function is GPIOintHndl (), refer to section ???). The
call back function is application specific, as only the application knows what to do when an input pin has
triggered an interrupt. The driver deals with clearing the interrupt request when possible, e.g. mainly with
edge triggered interrupts. For level sensitive interrupts, the clearing of the interrupt request can only be
performed in the call back function by changing the level at the source of the signal, or by disabling the
associated interrupt. Depending on the target platform, more than one interrupt handlers may have to be
attached. Refer to the header in the code itself as this information is provided (I/O pin range are associated
with its GPIOintHndl _n())

The configuration of the GPIO pin is done through the gpio dir() (Section ???) and gpio_cfg()
(Section ???7), where the former sets the direction of the pins (input or output) and the later configures the
behavior of each pins. gpio_cfg() supports these “set-up” through bit fields (multiple configuration can
be ORed together). Refer to section ??? for a full description.

Rev 1.3 Page 9

Abassi RTOS GPIO Support 2019.03.05

4 Multiple Drivers

It is possible to use 2 or more drivers for different GPIO controllers. Example of the need for this is a
processor with on-chip GPIO(s) on a board with different type of GPIO(s), or a SocFPGA with custom
GPIO(s) added in the FPGA fabrics that are of different type than the processor system GPIO(s). To use
multiple drivers the build option GPIO_MULTIPLE DRIVER must be defined and set to a non-zero value.
This changes the API names of the driver by pre-pending the GPIO type to the function names. For
example, if alt _gpio.c is used, the APIs are named as following:

Table 4-1 API remapping

‘ Original Multiple ‘
gpio_cfg() alt gpio_cfg()
gpio_dir() alt gpio_dir()
gpio_get() alt gpio_get()

gpio_bank_get() alt gpio_bank_get()
gpio_init() alt gpio_init()
gpio_set() alt gpio_set()
gpio_bank_set() alt gpio_bank_set()
GPIOintHndl() alt GPIOintHndl()
GPIOintHndl_#() alt_GPIOintHndl_#()

The prefix is always the prefix in the file name; e.g. alt_gpio.c prefix is “alt” and x1x_gpio.c is
“Xlx”.

All build options, if not prefixed, apply to all the drivers. To set build options on a per-driver basic all
there is to do is used the build option that has been pre-fixed with the same prefix used in the API but in
uppercase. For example to set each of the multiple drivers to include the interrupt handling code, the build
option GPIO_USE_ISR should defined and set to a non-zero value. When a driver specific build option is
defined then the driver for which the build option applies ignores the equivalent global build.

A custom wrapper must be provided. The following code shows such a driver for the alt gpio and a
fictitious driver xyz_gpio. The example maps I/O pin numbers from 0 to 299 to the alt_gpio driver, the
I/O pin numbers 300 to 999 to the xyz_gpio driver and all I/O pin number greater or equal to 1000 to the
alt_gpio. The I/O pin numbers 1000 and up are for one or more FPGA IP modules.

The wrapper has all the standard GPIO API functions and in these functions, depending on the 1I/O pin
specified in the argument, either the alt gpio driver is used or the xyz_gpio driver is used. The I/O pin
numbers used are such they don’t need to be remapped when the alt gpio driver is called but they have
to be remapped for the xyz_gpio driver. i.e. when the xyz_gpio is called the I/O pin numbers between
300 and 999 (as used with the wrapper), they are remapped to the I/O pin numbers between 0 to 699.

The wrapper also remaps the interrupt handler. In the case of the alt_gpio driver, it needs its interrupt
handlers #0, #1, #2, #1000 and #2000; these are mapped as is. The xyz gpio needs its interrupt handlers
#0 and #1 and these two are remapped by the wrapper to interrupt handlers #3 and #4.

Rev 1.3 Page 10

Abassi RTOS GPIO Support 2019.03.05

Table 4-2 Multiple GPIO wrapper example (gpio.c)

#include "gpio.h"

int gpio_cfg(int IOpin, int Cfg)

{
int RetVal;

ReVal = ((IOpin < 300) || (IOpin >= 1000))
? alt _gpio_cfg(IOpin, Cfg)
xyz_gpio_cfg(IOpin-300, Cfg);

return(RetVal);

int gpio_dir(int IOpin, int Dir)

{
int RetVal;

= ((IOpin > 300) || (IOpin >= 1000))
? alt _gpio_dir(IOpin, Cfg)
? xyz_gpio_dir(IOpin-300, Cfg);

RevVal

return(RetVal);

int gpio_get(int IOpin)

{
int RetVal;

((IOpin < 300) || (IOpin >= 1000))
alt _gpio_get(IOpin)
xXyz_gpio_get(IOpin-300);

RevVal

ol

return(RetVal);

int32_t gpio_bank get(int IOpin, int *Err)

{
int32_t RetVal;

= ((IOpin < 300) || (IOpin >= 1000))
? alt_gpio_bank get(IOpin, Err)
? xyz_gpio_bank get(IOpin-300, Err);

ReVal

return(RetVal);

int gpio_init(int Forced)

{
int RetVal;

RetVval alt _gpio_init(Forced);
RetVal |= xyz gpio_ init(Forced);

Rev 1.3 Page 11

Abassi RTOS GPIO Support 2019.03.05

return(RetVal);

int gpio_set(int IOpin, int Value)

{
int RetVal;

RevVal = ((IOpin < 300) || (IOpin >= 1000))
? alt_gpio_set(IOpin, Value)
?

xXyz_gpio_set(IOpin-300, Value);

return(RetVal);

int gpio_bank set(int IOpin, int32_t Value)

{
int RetVal;

= ((IOpin < 300) || (IOpin >= 1000))
? alt_gpio_bank set(IOpin, Value)
? xyz_gpio_bank set(IOpin-300, Value);

ReVal

return(RetVal);

void GPIOintHndl_ 0 (void)
void GPIOintHndl_1(void)
void GPIOintHndl_2(void)
void GPIOintHndl_3(void) xyz_GPIOintHndl 0¢();
void GPIOintHndl 4 (void) xyz_GPIOintHndl 1();
void GPIOintHndl_1000(void) { alt_GPIOintHndl 1000(); }
void GPIOintHndl_2000(void) { alt_GPIOintHndl 2000(); }

alt_GPIOintHndl_0();
alt_GPIOintHndl_1();
alt_GPIOintHndl_2();

e e e
B e el el ol

/* EOF */

Rev 1.3 Page 12

Abassi RTOS

GPIO Support 2019.03.05

Table 4-3 Multiple GPIO wrapper example (gpio.h)

extern
extern
extern
extern

#endif

/* EOF

#ifndef _ GPIO_H_

#define _ GPIO H 1
#include "alt _gpio.h" /* alt GPIO driver x/
#include "xyz_gpio.h" /* xyz GPIO driver x/
#ifndef GPIO_MULTI_DRIVER /* It must be defined and set to !=0 */
#define GPIO_MULTI_DRIVER 0 /* Set 0 to trigger the error message */
#endif
#if ((GPIO_MULTI DRIVER) == 0)
#error "GPIO_MULTI_DRIVER must be defined and set to a non-zero value"
#endif
K e —————————————— */
int gpio_cfg (int IOpin, int Cfg);
int gpio_dir (int IOpin, int Dir);
int gpio_get (int IOpin);
int gpio_bank get (int IOpin, int *Err);
int gpio_int (int Forced);
int gpio_set (int IOpin, int Value);

int gpio_bank set (int

void GPIOintHndl_0(void);
void GPIOintHndl_1(void);
void GPIOintHndl 1000 (void);
void GPIOintHndl 2000 (void);

*/

IOpin, int32_t Value);

Rev 1.3

Page 13

Abassi RTOS GPIO Support 2019.03.05

5 API

In this section, the API of all common GPIO driver functions is provided.

Rev 1.3 Page 14

Abassi RTOS GPIO Support 2019.03.05

5.1.1 gpio_cfg

Synopsis
#include “???_ gpio.h”
int gpio_cfg(int IOpin, int Cfg);
Description
gpio_cfg() is the component used to configure the operation of a single input I/O pin. The
I/O pin number is indicated by the argument IOpin and the configuration to apply is
indicated by the argument C£g.
Arguments
IOpin /O pin number (Number starting at 0)
Cfg Configuration bit field, see Options
Returns
int == 0, success
!= 0, error
Component type
Function
Options
The argument C£g is an Oring of any of the following tokens:
GPIO_CFG_ISR LEVEL_0: enable and set the I/O pin interrupt type to level sensitive,
with a low input level (0).
GPIO _CFG_ISR LEVEL_1l: enable and set the I/O pin interrupt type to level sensitive,
with a low input level (1).
GPIO_CFG_ISR EDGE_0_1: enable and set the I/O pin interrupt type to edge sensitive,
with a transition on the input from low (0) to high (1).
GPIO _CFG_ISR EDGE_1_0: enable and set the I/O pin interrupt type to edge sensitive,
with a transition on the input from high (1) to low (0).
GPIO_CFG_ISR EDGE_ANY: enable and set the I/O pin interrupt type to edge sensitive,
with any transition on the input: from low (0) to high (1) or
high (1) to low(0).
GPIO_CFG_ISR_OFF: disable the I/O pin interrupt.
GPIO_CFG_DEB_OFF: disable input debouncing on the 1/O pin.
GPIO_CFG_DEB_ON: enable input debouncing on the 1/O pin.
Most GPIO controllers don’t support all these type pof configurations. Refer to the header in
the code itself for a detailed description of each configuration, to know if it is supported,
ignored or report an error.
Notes

gpio_cfg() does not control the direction of an I/O pin, it configures the operation of input
pins. To control the direction of an I/O pin, refer to gpio_dir() (section 5.1.2).

Rev 1.3 Page 15

Abassi RTOS GPIO Support 2019.03.05

See Also
gpio_dir() (Section 5.1.2)
gpio_get() (Section 5.1.3)

Rev 1.3 Page 16

Abassi RTOS GPIO Support 2019.03.05

5.1.2 gpio_dir

Synopsis
#include “???_ gpio.h”
int gpio fir(int IOpin, int Dir);
Description
gpio_dir() is the component used to set an I/O pin as an input or an output pin. The I/O
pin number to set up is indicated by the argument I0pin and the direction is specified by the
argument Dir.
Arguments
IOpin I/O pin number (Number starting at 0)
Dir Direction of the I/O pin:
== 0 or GPIO DIR_OUT: output direction
!= 0 or GPIO_DIR IN: input direction
Returns
int == 0, success
1= 0, error
Component type
Function
Options
Some FPGA IP module can be configured to have I/O pin set to a fixed direction. Refer to
the header in the code itself for more details
Notes
gpio_dir () does not configure the operation of input pins. To configure theoperation of an
input I/O pin, refer to gpio_cfg() (section).
See Also

gpio_cfg() (Section5.1.1)
gpio_get() (Section 5.1.3)
gpio_set() (Section 5.1.6)

Rev 1.3 Page 17

Abassi RTOS GPIO Support 2019.03.05

5.1.3 gpio_get

Synopsis
#include “???_ gpio.h”
int gpio_get(int IOpin);
Description
gpio_get() is the component used to read the value of an input I/O pin. The I/O pin
number to read is indicated by the argument I0pin and. If the I/O pin is an output pin, the
value returned could either be the value held in the output pin register, or the value at the
output pin itself, or it could be invalid. The result is controller dependent
Arguments
IOpin I/O pin number (Number starting at 0)
Returns
int == 0, the input at the I/O pin is a low level (0)
== 1, the input at the I/O pin is a high level (1)
< 0, error (invalid I/O pin number)
Component type
Function
Options
Notes
See Also

gpio_dir() (Section 5.1.2)
gpio_bank get() (Section 5.1.4)
gpio_set() (Section 5.1.6)
gpio_bank set() (Section 5.1.7)

Rev 1.3 Page 18

Abassi RTOS GPIO Support 2019.03.05

5.1.4 gpio_bank_get

Synopsis
#include “???_ gpio.h”
int32_t gpio_bank get(int IOpin, int *Err);
Description
gpio_bank get() is the component used to read the value of a GPIO bank (the group of
I/O pins in the same GPIO controller). The bank number to read is indicated by the argument
IOpin: I0pin can have the value of any of the I/0O pins located in desired bank to read. The
argument Err indicates if there is a read error, which can be either an invalid T0pin value or
a write only bank.
Arguments
IOpin Any 1/0 pin number (Number starting at 0) in the bank to read
Err pointer to an int reporting success or error
== 0 :read successful
!= 0:error
Err can be NULL, which will not be reported
Returns
int32_t When successful (*Err == 0) value read
Undetermined upon error (*Err != 0)
Component type
Function
Options
Notes
See Also

gpio_dir() (Section 5.1.2)
gpio_get() (Section 5.1.3)
gpio_set() (Section 5.1.6)
gpio_bank set() (Section 5.1.7)

Rev 1.3 Page 19

Abassi RTOS GPIO Support 2019.03.05

5.1.5 gpio_init

Synopsis
#include “???_ gpio.h”
int gpio_init(int Forced);
Description
gpio_init() is the component used to initialize a GPIO module. A single argument is
used, Forced, and it indicates if the GPIO has to be re-initialized if it has already been
initialized.
Arguments
Forced 1= 0, forces an initialization, even of already initialized
== 0, initializes the module only if has never been initialized
Returns
int == 0, success
!= 0, error
Component type
Function
Options
Notes
See Also

Rev 1.3 Page 20

Abassi RTOS GPIO Support 2019.03.05

5.1.6 gpio_set

Synopsis
#include “???_ gpio.h”
int gpio_set(int IOpin, int Value);
Description
gpio_init() is the component used to set the output value of an output I/O pin. The I/O pin
number to set is indicated by the argument I0pin and the value ot set is specified with tah
argument Value. If the I/O pin is an input pin, the result is controller dependent but most
likely will do nothing.
Arguments
IOpin I/O pin number (Number starting at 0)
Value value to set on the output pin:
== 0, the output pin is set to a low level (0)
1= 0, the output pin is set to a high level (1)
Returns
int == 0, success
1= 0, error
Component type
Function
Options
Notes
See Also

gpio_dir() (Section 5.1.2)
gpio_get() (Section 5.1.3)
gpio_bank get() (Section 5.1.4)
gpio_bank set() (Section 5.1.7)

Rev 1.3 Page 21

Abassi RTOS GPIO Support 2019.03.05

5.1.7 gpio_bank_set

Synopsis
#include “???_ gpio.h”
int gpio_bank set(int IOpin, int32_t Value);
Description
gpio_bank_set() is the component used to write a value to a GPIO bank (the group of I/O
pins in the same GPIO controller). The bank number to write to is indicated by the argument
IOpin: IOpin can have the value of any of the I/O pins located in desired bank to write to.
The argument Value specifies the value to write.
Arguments
IOpin Any 1/0 pin number (Number starting at 0) in the bank to read
Value value to set on the output pins
Returns
int == 0, success
!= 0, error
Component type
Function
Options
Notes
See Also

gpio_dir() (Section 5.1.2)
gpio_get() (Section 5.1.3)
gpio_bank get() (Section 5.1.4)
gpio_set() (Section 5.1.6)

Rev 1.3 Page 22

Abassi RTOS GPIO Support 2019.03.05

5.1.8 GPIOintHndlI

Synopsis
#include “?22?_GPIO.h”
void GPIOintHndl n(int IOpin);

Description
GPIOintHndl () is the call back function that must be provided when interrupts are used
with a GPIO driver (refer to section 2.1.2). The sole argument is the I/O pin number that has
triggered the interrupt.
Important: it is not to be confused with the GPIO interrupt handlers themselves, which have
an alike name but with a number: GPIOintHndl n.

Arguments
IOpin I/O pin number (Number starting at 0) that has trigger an interrupt

Returns
void

Component type
Function

Options

Notes
GPIOintHndl() is called within an interrupt context, therefore care must be taken to only
use services available in an interrupt.
When an I/O pin is configured to trigger an interrupt on edge, the driver deals with the
removal of the interrupt request. When an I/O pin is configured to trigger an interrupt on a
level, the driver cannot deal with the removal of the interrupt request so the call back
function must perform the necessary to remove the interrupt request. This can be done by
either removing the cause of the triggering level or by disabling the interrupt on the I/O pin.

See Also
GPIOintHandl n() (Section 5.1.9)

Rev 1.3 Page 23

Abassi RTOS GPIO Support 2019.03.05

5.1.9 GPIOintHndI_n

Synopsis
#include “???_ gpio.h”
void GPIOintHndl_ n(void);

Description
GPIOintHndl n() is (are) the interrupt handler(s) used by the GPIO driver. Some target
platforms only need a single interrupt handler (i.e. GPTOintHndl 0 ()) when other requires
multiple interrupt handlers. Refer to the header in the code for a detailed description of the
requirements.
All there is to do with these functions is to attach them to the associated interrupt from the
interrupt controller.
Important: it is not to be confused with the GPIO interrupt call back function, which have an
alike name but without a number: GPIOintHndl.

Arguments
void

Returns
void

Component type
Function

Options

Notes
The GPIO interrupt call-back function (6GPI0OintHdnl ()) must be provided when interrupts
are used with the GPIO driver.

See Also

GPIOintHandl() (Section 5.1.8)

Rev 1.3 Page 24

Abassi RTOS GPIO Support 2019.03.05

6 References

[R1] Abassi RTOS — User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS — User Guide, available at http://www.code-time.com
[R3] pnAbassi RTOS — User Guide, available at http://www.code-time.com

Rev 1.3 Page 25

