
Copyright Information
This document is copyright Code Time Technologies Inc. ©2018 All rights reserved. No part of this document may be reproduced or
distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time
Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS
Media I/F

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 SYSTEM CALL LAYER ... 6

2 MODEL ... 7
3 BUILD OPTIONS ... 9

3.1.1 MEDIA_AUTO_SELECT .. 12
3.1.2 MEDIA_NNNN#_IDX ... 12
3.1.3 MEDIA_NNNN#_DEV & MEDIA_QSPI#_SLV ... 12
3.1.4 MEDIA_NNNN_SECT_SZ .. 12
3.1.5 MEDIA_NNNN#_SECT_SZ .. 13
3.1.6 MEDIA_QSPI_SECT_BUF .. 13
3.1.7 MEDIA_QSPI_OPT_WRT .. 13
3.1.8 MEDIA_QSPI_CHK_WRT ... 13
3.1.9 MEDIA_NNNN#_FIRST & MEDIA_NNNN#_SIZE ... 13
3.1.10 MEDIA_MDRV_SIZE ... 14
3.1.11 MEDIA_ARG_CHECK ... 14
3.1.12 MEDIA_DEBUG ... 14

4 FILES ... 15
4.1 MEDIA I/F ALONE ... 15
4.2 SYSTEM CALL LAYER & MEDIA I/F ... 15
4.3 FAT-FS ... 15
4.4 FULLFAT ... 16
4.5 UEFAT .. 16

5 REFERENCES .. 18
6 REVISION HISTORY ... 19

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 4

List of Figures

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 3-1 BUILD OPTIONS .. 9

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 6

1 Introduction
This document provides a description and explains how to set-up the Media Interface module used in
Abassi1 [R1] (including mAbassi [R2] and µAbassi [R3]). The Media Interface is the layer located
between the file system stacks (e.g. FAT 32 file system) and the Abassi drivers alike QSPI and SD/MMC.
The Media Interface consists in fact of two layers. The lower one is a single file common to all file system
stacks and it is used as a uniform interface between media stack specific interface file and Abassi’s drivers.
The upper layer is the media specific stack file that interfaces the file system stack and the common Media
Interface layer.

The API won’t be described because each media stack uses their proprietary API to interface with the
media and there are no reasons to directly use the common interface layer. If a new media stack is desired
to be added the common interface layer, the API is well described in the headers of the few functions and
any of the already supported media stack API with the common interface can be used as a template. The
file system stack specific code is quite small in fact and around half the file is comments.

1.1 Distribution Contents
The Media Interface module consists of the following files:

Table 1-1 Distribution

File Name Description

MediaIF.h Include file associated with MediaIF.c

MediaIF.c “C” file for the lower layer media Interface

Media_FatFS.c “C” file to interface the FatFS file system with MediaIF.c

Media_FullFAT.c “C” file to interface the FullFAT file system with MediaIF.c

Media_ueFAT.c “C” file to interface the ueFAT file system with MediaIF.c

The media stack specific interface files (Media_FatFS.c, Media_FullFAT.c and Media_ueFAT.c)
above are available at the time of writing. Over time it is likely that extra ones being added.

1.2 System Call Layer
The Media Interface is designed for, so it is is tightly coupled with the System Call layer [R4] and very
little extra set-up is needed to achieve this. All there is to do use the System Call Layer with media
accesses is to include in the app are the following files:

- SysCall_STACK.c File system stack specific system call layer

- SysCall_COMPILER.c Non-GCC compiler specific system call layer I/F

- Media_STACK.c File system stack specific Media I/F

- MediaIF.c common Media I/F

If multiple File System stacks are to be used together, then SysCall_MultiFS.c needs to be omcluded
and all the related SysCall_STACK.c & Media_STACK.c files. A small number of build options specific
to the System Call layer must de defined, refer to [R4] for all details.

1 When Abassi is mentioned in this document, unless explicitly stated, it always means Abassi, mAbassi
and µAbassi.

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 7

2 Model
The common lower layer of the Media I/F is the same across all target platforms and compilers as Abassi
driver’s API is kept the same across all target platforms and compilers. There are a lot of build options
(Section 3) because the Media I/F has been created to be as versatile as possible. All the build options
specified here apply to the MediaIF.c file and not the file system specific layer file (i.e.
Media_STACK.c). The file system stack specific Media I/F files rely on the file system stack definitions
when required. Most of the build options are used to map the physical media storage devices to a device
number (this is what is called the drive number and it’s the number used when mounting / accessing the
storage device through the application). Drive numbers in an application starts at 0 and increment in a
contiguous manner; no drive number can be skipped.

The media interface common layer supports these devices:

- SD/MMC: up to 2 physical devices

- QSPI: up to 4 physical devices

- Memory drive: only 1

The build options used to map the physical devices to the drive number used by the application have these
suffixes:

_IDX: build options with the suffix _IDX defines the drive number

_DEV: build options with the suffix _DEV specify the driver device #, i.e. the number used in the
drivers to identify the controller number.

_SLV: build options with the suffix _SLV are only used for QSPI devices and they specify the
slave number (chip select line) on which the QSPI chip is connected to the QSPi
controller. This is the number used by the QSPI driver.

The simplest way to use the Media I/F is to not specify any MEDIA_???? build options and let it map the
drives according to the available media devices on the target board. The information used to perform this
mapping is extracted from the file Platform/inc/Platform.h and it relies on the definitions of
SDMMC_DEV, QSPI_DEV and QSPI_SLV. The application drive numbers are assigned from 0 and up in this
order: 1st SD/MMC, 2nd QSPI. So when the device mapping is automatic, up to 2 mass storage devices can
be automatically supported; it could be less as not all demo boards have SD/MMC and/or QSPI media.
Other physical devices can be added over the automatically selected ones as long as the device numbers
(_IDX values, see next paragraph) don’t equate or exceed the total number of devices, If any of the
specified indexes are 0 or 1, the automatic mapping always skips the assigned indexes done with the
definition of the MEDIA_?????_IDX build options.

If the automatic mapping is not desired, then the build option MEDIA_AUTO_SELECT must be defined and
set to a value of 0. The mass storage devices are defined with pairs of build options with the suffix _IDX
and _DEV (plus _SLV for QSPI). For example, if there are 3 QSPI devices (devices:slaves - 0:0, 0:1, 1:0)
on the target platform, 2 SD/MMC (devices - 0, 1) and a memory drive are to be used, then one mapping
could be for example:

- Drive #0 SD/MMC controller #1:

MEDIA_SDMMC0_IDX = 0 - SD/MMC mapped to drive #0

MEDIA_SDMMC0_DEV = 1 - SD/MMC controller #1 mapped to drive #0

- Drive #1 QSPI controller #0 / Slave #1:

MEDIA_QSPI0_IDX = 1 - QSPI mapped to drive #1

MEDIA_QSPI0_DEV = 0 - QSPI controller #0 mapped to drive #1

MEDIA_QSPI0_SLV = 1 - QSPI controller #0 / Slave #1 mapped to drive #1

- Drive #2 QSPI controller #0 / Slave #0:

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 8

MEDIA_QSPI1_IDX = 2 - QSPI mapped to drive #2

MEDIA_QSPI1_DEV = 0 - QSPI controller #0 mapped to drive #2

MEDIA_QSPI1_SLV = 0 - QSPI controller #0 / Slave #0 mapped to drive #2

- Drive #3 QSPI controller #1 / Slave #0:

MEDIA_QSPI2_IDX = 3 - QSPI mapped to drive #3

MEDIA_QSPI2_DEV = 1 - QSPI controller #1 mapped to drive #3

MEDIA_QSPI2_SLV = 0 - QSPI controller #1 / Slave #0 mapped to drive #3

- Drive #4 SD/MMC controller #0:

MEDIA_SDMMC1_IDX = 4 - SD/MMC mapped to drive #4

MEDIA_SDMMC1_DEV = 0 - SD/MMC controller #0 mapped to drive #4

- Drive #5 Memory Drive:

MEDIA_MDRV_IDX = 5 - Memory drive mapped to drive #5

MEDIA_MDRV_SIZE = 0 - Size & base address of the drive is provided by the linker

These restrictions must be followed when mapping the physical media devices to the application device
numbers:

1- no two build options with the suffix _IDX can be assigned the same numerical value. This
would map 2 different physical media on the same drive number

2 – for each build option with the suffix _IDX defined, there must be a corresponding _DEV (and for
QSPI media also _SLV) build option defined.

3 - If a number of N build options with the suffix _IDX are defined, then the values assigned to
these build options must be within the range of 0 to N-1, no “holes” are permissible.

Error messages during compile time are issued if any of the restrictions are not respected. If a _DEV and/or
_SLV is defined with no corresponding _IDX, then these _DEV / _SLV definitions are ignored. If a build
option _IDX or _DEV or _SLV is defined and assigned a negative value, it is the same as if it hasn’t been
defined.

The name of these build options is always named using the following consturct, excluding the suffix:
 MEDIA __ STORAGE_TYPE NUMBER __

STORAGE_TYPE is SDMMC, QSPI, or MDRV.

NUMBER is a unique identifier with no relationship to the controller number (device
number used by the Abassi’s drivers) or the drive number it is mapped to; A B
C could have been used… but numbers it is. It’s not necessary to start using
NUMBER at zero (0) nor use contiguous values for NUMBER.

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 9

3 Build Options
The build options supported by the Media I/F are shown in the following table:

Table 3-1 Build Options

Token Name Default Description
MEDIA_AUTO_SELECT !=0 (enable) Controls if the mapping between device and

drive is done automatically or not
MEDIA_SDMMC_SECT_SZ 512 Declares a different sector size than the real

physical sector size for all SD/MMCs
MEDIA_SDMMC0_IDX undefined Drive number for a SD/MMC identified as 0

(0 has no relationship to the drive, device or
controller numbers)

MEDIA_SDMMC0_DEV undefined SD/MMC controller number (Abassi’s driver
device number) to map to the drive number
specified by MEDIA_SDMMC0_IDX

MEDIA_SDMMC0_SECT_SZ MEDIA_SDMMC_SECT_SZ Declares a different sector size than the
physical sector size for the SD/MMC card
mapped to the drive number specified by
MEDIA_SDMMC0_IDX and
MEDIA_SDMMC0_DEV

MEDIA_SDMMC0_FIRST 0 First block of 512 bytes to use on the
SD/MMC card mapped to the drive number
specified by MEDIA_SDMMC0_IDX &
MEDIA_SDMMC0_DEV

MEDIA_SDMMC0_SIZE undefined Size in multiple of 512 bytes to use on the
SD/MMC card mapped to the drive number
specified by MEDIA_SDMMC0_IDX &
MEDIA_SDMMC0_DEV

MEDIA_SDMMC1_IDX undefined Drive number for a SD/MMC identified as 1
(1 has no relationship to the drive, device or
controller numbers)

MEDIA_SDMMC1_DEV undefined SD/MMC controller number (Abassi’s driver
device number) to map to the drive number
specified by MEDIA_SDMMC1_IDX

MEDIA_SDMMC1_SECT_SZ MEDIA_SDMMC_SECT_SZ Declares a different sector size than the
physical sector size for the SD/MMC card
mapped to the drive number specified by
MEDIA_SDMMC1_IDX & MEDIA_SDMMC1_DEV

MEDIA_SDMMC1_FIRST 0 First block of 512 bytes to use on the
SD/MMC card mapped to the drive number
specified by MEDIA_SDMMC1_IDX &
MEDIA_SDMMC1_DEV

MEDIA_SDMMC1_SIZE undefined Size in multiple of 512 bytes to use on the
SD/MMC card mapped to the drive number
specified by MEDIA_SDMMC1_IDX &
MEDIA_SDMMC1_DEV

MEDIA_QSPI_SECT_SZ 512 Declares a different sector (minimum erase
size) than the real ones for all QSPI devices

MEDIA_QSPI0_IDX undefined Drive number for a QSPI identified as 0 (0

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 10

has no relationship to the drive, device, slave
or controller numbers)

MEDIA_QSPI0_DEV undefined QSPI controller number (Abassi’s driver
device number) to map to the drive number
specified by MEDIA_QSPI0_IDX

MEDIA_QSPI0_SLV undefined QSPI slave number (chip select) to map to the
drive number specified by
MEDIA_QSPI0_IDX

MEDIA_QSPI0_SECT_SZ MEDIA_QSPI_SECT_SZ Declares a different sector size than the
smallest erase size of the QSPI chip mapped
to the drive number specified by
MEDIA_QSPI0_IDX & MEDIA_QSPI0_DEV &
MEDIA_QSPI0_SLV

MEDIA_QSPI0_FIRST 0 First block of 512 bytes to use on the QSPI
chip mapped to the drive number specified by
MEDIA_QSPI0_IDX & MEDIA_QSPI0_DEV &
MEDIA_QSPI0_SLV

MEDIA_QSPI0_SIZE undefined Size in multiple of 512 bytes to use on the
QSPI chip mapped to the drive number
specified by MEDIA_QSPI0_IDX &
MEDIA_QSPI0_DEV & MEDIA_QSPI0_SLV

MEDIA_QSPI1_IDX undefined Drive number for a QSPI identified as 1 (1
has no relationship to the driver, device, slave
or controller numbers)

MEDIA_QSPI1_DEV undefined QSPI controller number (Abassi’s driver
device number) to map to the drive number
specified by MEDIA_QSPI1_IDX

MEDIA_QSPI1_SLV undefined QSPI slave number (chip select) to map to the
drive number specified by
MEDIA_QSPI1_IDX

MEDIA_QSPI1_SECT_SZ MEDIA_QSPI_SECT_SZ Declares a different sector size than the
smallest erase size of the QSPI chip mapped
to the drive number specified by
MEDIA_QSPI1_IDX & MEDIA_QSPI1_DEV &
MEDIA_QSPI1_SLV

MEDIA_QSPI1_FIRST 0 First block of 512 bytes to use on the QSPI
chip mapped to the drive number specified by
MEDIA_QSPI1_IDX & MEDIA_QSPI1_DEV &
MEDIA_QSPI1_SLV

MEDIA_QSPI1_SIZE undefined Size in multiple of 512 bytes to use on the
QSPI chip mapped to the drive number
specified by MEDIA_QSPI1_IDX &
MEDIA_QSPI1_DEV & MEDIA_QSPI1_SLV

MEDIA_QSPI2_IDX undefined Drive number for a QSPI identified as 2 (2
has no relationship to the driver, device, slave
or controller numbers)

MEDIA_QSPI2_DEV undefined QSPI controller number (Abassi’s driver
device number) to map to the drive number
specified by MEDIA_QSPI2_IDX

MEDIA_QSPI2_SLV undefined QSPI slave number (chip select) to map to the

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 11

drive number specified by
MEDIA_QSPI2_IDX

MEDIA_QSPI2_SECT_SZ MEDIA_QSPI_SECT_SZ Declares a different sector size than the
smallest erase size of the QSPI chip mapped
to the drive number specified by
MEDIA_QSPI2_IDX & MEDIA_QSPI2_DEV &
MEDIA_QSPI2_SLV

MEDIA_QSPI2_FIRST 0 First block of 512 bytes to use on the QSPI
chip mapped to the drive number specified by
MEDIA_QSPI2_IDX & MEDIA_QSPI2_DEV &
MEDIA_QSPI2_SLV

MEDIA_QSPI2_SIZE undefined Size in multiple of 512 bytes to use on the
QSPI chip mapped to the drive number
specified by MEDIA_QSPI2_IDX &
MEDIA_QSPI2_DEV & MEDIA_QSPI2_SLV

MEDIA_QSPI3_IDX undefined Drive number for a QSPI identified as 3 (3
has no relationship to the driver, device, slave
or controller numbers)

MEDIA_QSPI3_DEV undefined QSPI controller number (Abassi’s driver
device number) to map to the drive number
specified by MEDIA_QSPI3_IDX

MEDIA_QSPI3_SLV undefined QSPI slave number (chip select) to map to the
drive number specified by
MEDIA_QSPI3_IDX

MEDIA_QSPI3_SECT_SZ MEDIA_QSPI_SECT_SZ Declares a different sector size than the
smallest erase size of the QSPI chip mapped
to the drive number specified by
MEDIA_QSPI3_IDX & MEDIA_QSPI3_DEV &
MEDIA_QSPI3_SLV

MEDIA_QSPI3_FIRST 0 First block of 512 bytes to use on the QSPI
chip mapped to the drive number specified by
MEDIA_QSPI3_IDX & MEDIA_QSPI3_DEV &
MEDIA_QSPI3_SLV

MEDIA_QSPI3_SIZE undefined Size in multiple of 512 bytes to use on the
QSPI chip mapped to the drive number
specified by MEDIA_QSPI3_IDX &
MEDIA_QSPI3_DEV & MEDIA_QSPI3_SLV

MEDIA_QSPI_SECT_BUF 65536 Size of temporary buffers used with QSPI
chips

MEDIA_QSPI_OPT_WRT 1 (enable) Controls if QSPI erasures /write are
minimized when possible. Applies to all QSPI
drives

MEDIA_QSPI_CHK_WRT 0 (disable) Controls if QSPI are read back after writing
and how many time to retry upon mismatch.
Applies to all QSPI drives

MEDIA_MDRV_IDX undefined Drive number for the memory drive
MEDIA_MDRV_SIZE 0 Select if the size of the memory drive is

provided by the linker or reserved at compile
time

MEDIA_ARG_CHECK 0 Boolean to enable / disable the checks on the

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 12

validity of the API function arguments
MEDIA_DEBUG 0 Boolean controlling the sending of progress /

debug messages to stdout.

Grouping is done in the following sub-sections to eliminate redundant descriptions. When the abbreviation
MEDIA_NNNN_... is used, it means MEDIA_SDMMC, MEDIA_QSPI, or MEDIA_MDRV. When the abbreviation
MEDIA_NNNN#_... is used, it means MEDIA_SDMMC0, MEDIA_SDMMC1, MEDIA_QSPI0, MEDIA_QSPI1,
MEDIA_QSPI2, MEDIA_QSPI3, or MEDIA_MDRV.

3.1.1 MEDIA_AUTO_SELECT
The build option MEDIA_AUTO_SELECT informs the Media I/F if it assigns or not the media device
numbers according to the information on the target platform SDMMC and QSPI media storage devices.
This information is located in the file Platform/inc/Platform.h. When MEDIA_AUTO_SELECT is not
defined, or is defined and set to a non-zero value, it selects the auti-mapping of the physical media based on
the information in Platform.h.: this is the default value. If it is defined, and set to a value of 0, it does
not use the information from Platform.h, and all media to access must be defined through the build
options with prefixes _IDX, _DEV (and _SLV for QSPI).

In Platform.h if SDMMC_DEV is defined for the target platform, the specified controller (Abassi’s driver
device number) will be mapped to drive #0. If it is not defined, then no SD/MMC is mapped by default. If
QSPI_DEV and QSPI_SLV are defined for the target platform, then depending if a SD/MMC controller is
mapped by default or not, the QSPI controller number (Abassi’s driver device number) / slave number
(Abassi’s driver slave number) will either be mapped to drive #0 (no SD/MMC controller) or to drive #1
(SD/MMC controller present). If one or more MEDIA_NNNN#_IDX build options are defined in the
application, these drive numbers are skipped by the automatic mapping as they take precedence, e.g. if the
application defines MEDIA_QSPI3_IDX and sets its value to 0, the automatic mapping will start at 1, and
not 0, when mapping the devices defined in Platform.h.

3.1.2 MEDIA_NNNN#_IDX
The build options MEDIA_NNNN#_IDX are use to associate a drive number with all the related
MEDIA_NNNN# build options. For example if MEDIA_SDMMC1_IDX is defined and set to 2 it will associate
the following build options to drive number 2: MEDIA_SDMMC1_DEV, MEDIA_SDMMC1_SECT_SZ,
MEDIA_SDMMC1_FIRST, and MEDIA_SDMMC1_SIZE. By default, none of the option MEDIA_NNNN#_IDX
build options are defined.

3.1.3 MEDIA_NNNN#_DEV & MEDIA_QSPI#_SLV
The build options MEDIA_NNNN#_DEV, and for QSPI, MEDIA_QSPI#_SLV, are use to specify which media
controller (Abassi’s driver device number), and for QSPI the slave number are accessed through the drive
number specified by MEDIA_NNNN#_IDX. For example if MEDIA_QSPI2_DEV is defined and set to 1, and
MEDIA_QSPI2_SLV is defined and set to 2, then the QSPI chip attached to controller #2 / slave #0 is
accessible as the drive number specified by the build option MEDIA_QSPI2_IDX.

By default, none of the option MEDIA_NNNN#_DEV and MEDIA_NNNN#_SLV build options are defined.

3.1.4 MEDIA_NNNN_SECT_SZ
Devices block sizes are highly variable across media. For example, SD/MMC can have block sizes of 512,
1024, 204, or 4096 bytes. QSPI block sizes, which are the smallest erasure size, can be between 128 to
256K bytes. Files systems typically rely on the device block size to select the sector sizes or when they are
set-up for a fixed sector size. When the sector size needs to be different from the device block size, the
build option MEDIA_NNNN_SECT_SZ can be used to overload the physical device block size. When defined
and set to a positive value, all media block size reported to the file system stack is the specified value. The
value assigned to MEDIA_NNNN_SECT_SZ applies to all media devices of the NNNN category. Individual
device sector size can be set with the MEDIA_NNNN#_SECT_SZ build option.

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 13

By default, MEDIA_NNNN_SECT_SZ is set to a value of 512 because it’s a sector size supported by all file
system stack.

3.1.5 MEDIA_NNNN#_SECT_SZ
By default, all media devices sector size in a category can be overloaded with the build option
MEDIA_NNNN_SECT_SZ. It is possible to overload individual devices sector size with the use of the build
option MEDIA_NNNN#_SECT_SZ. Everything described for MEDIA_NNNN_SECT_SZ applies, except it only
applies to the specific drive indicated by the NNNN# in the build option. If both MEDIA_NNNN_SECT_SZ
and MEDIA_NNNN#_SECT_SZ are defined and set to values greater than 0, then MEDIA_NNNN#_SECT_SZ
takes precedence.

3.1.6 MEDIA_QSPI_SECT_BUF
QSPI sub-sector sizes (minimum erasure size) are commonly 4096 bytes. When the file system sector size
is smaller than the QSPI sub-sector size, it becomes necessary, when writing a sector to a QSPI sub-sector,
to read a full sub-sector and deposit the data in a temporary buffer, erase the sub-sector, insert the file
system sector to write in the temporary buffer and write the updated temporary buffer to the QSPI chip.
The build options MEDIA_QSPI_SECT_BUF set the size of the temporary buffers (there is one buffer per
QSPI drives) and they are set by default to 65536 (64KB) as this seems to be the largest QSPI sub-sector.
There shouldn’t be any needs to change the value of this build option unless data memory is short, or a
QSPI chip with a larger sub-sector than 64K (i.e. the very few parts with 256K sub-sectors) is used.

NOTE: It is not advisable to use QSPI parts with sub-sector size that are greater than 4K if the QSPi chip
will go through many writes as there risks to be an excessive number of erase that will be
performed and QSPI chips have a finite number of erasure cycle they be submitted to.

3.1.7 MEDIA_QSPI_OPT_WRT
QSPI chips wears out over time due the to erasures. The build option MEDIA_QSPI_OPT_WRT changes the
way sector writing is performed for all QSPI devices. When this feature is enabled (the build option set to a
non-zero value) the Media I/F analyzes the data in the data to write to see if it is possible to skip the
erasure. When writing on a QSPI chip a 1 can be changed to a 0 without erasure. The sub-sector to write
to is first read from the QSPI and the QSPI contents compared to the data to write. If only bit transitions
from 1 to 0 are required, the erasure step is skipped. Also checked is to see if the data to write is identical
to the QSPI data at the beginning and at the end of the sector. When there are continuously identical data at
the beginning and/or at the end, the writing of these is skipped for the contiguous identical data.

For the QSPI optimized writing to be effective, QSPI chips should be completely erased before being
formatted. The more files get written to the QSPI file system will over time reduce the efficiency of QSPI
write optimization because less and less “virgin” sub-sectors remain. The QSPI optimize writing is enable
by default. This build option applies to all QSPI devices.

3.1.8 MEDIA_QSPI_CHK_WRT
As a reliability mechanism, it is possible to check if the data written on the QSPI chips is correct. By
default, the data held in the QSPI chip after a write is not counter-checked against the data that was written.
To enable the checking of the data written, the build option MEDIA_QSPI_CHK_WRT has to be set to a
positive value and the value specifies the maximum number of retries that can be performed when the data
written in the chip does not match what it’s supposed to be. Upon mismatch, a value of 1 will try writing
again only once, a value of 2 will try it writing a maximum of 2 times. This build option applies to all
QSPI devices.

3.1.9 MEDIA_NNNN#_FIRST & MEDIA_NNNN#_SIZE
It is possible to use part of a media device using the combination of the build options
MEDIA_NNNN#_FIRST and MEDIA_NNNN#_SIZE. By default, none of these are defined and the whole area
of the media device is accessed. When MEDIA_NNNN#_FIRST is defined and set to a positive value, it
specifies the first address in the media device to use, any addresses below the value specified are left

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 14

inaccessible and untouched. The value specified is in block of 512 bytes, therefore specifying value of
1000 leaves the lower 512000 bytes of the media device untouched. When MEDIA_NNNN#_SIZE is
specified and set to a positive value, it redefines the total size of the media device. MEDIA_NNNN#_SIZE
value is also the number of 512 bytes blocks.

It is not possible at build time to determine if the resulting size using of the build options exceeds the size
of the media device itslef. During run time, if MEDIA_NNNN#_FIRST refers to a memory address located
past the size of the media device, the initialization of the media device will fail. In the case of
MEDIA_NNNN#_SIZE, if the resulting upper address is higher than the real upper address of the media
device, the size used is the available area (the size is Media_Size-512*MEDIA_NNNN#_FIRST) and these
is no report (except in the debug info when MEDIA_DEBUG is >1). The resulting upper address specified by
the 2 build options is 512*(MEDIA_NNNN#_FIRST+MEDIA_NNNN#_SIZE).

There are multiples reasons why blocks of 512 bytes was chosen as the unit for the build options
MEDIA_NNNN#_FIRST and MEDIA_NNNN#_SIZE. First, the minimum block size / sector size supported by
all file systems is 512 bytes so using 512 bytes makes sense. Most QSPI chips sub-sector erase sizes are
4096 bytes therefore using 512 bytes guarantees data alignment on QSPI sub-sector boundaries. SD/MMC
size exceed 4 GB, so it would have been imperative to add LL in the build option values to make sure the
pre-processor value can exceed 2^32-1. (LL is easy to forget and could lead to unknowingly corrupt area in
the media device that should have been left untouched.

It is not necessary to define both build options if the area to leave untouched is the lower part of the
memory or the upper area of the memory. To protect the low memory from addresses 0 to
512*MEDIA_NNNN#_FIRST, it’s only necessary to specify MEDIA_NNNN#_FIRST as the Media I/F will
access all the remainder of the media device memory. To protect the upper memory from addresses
512*MEDIA_NNNN#_SIZE to the end of the memory, it’s only necessary to specify MEDIA_NNNN#_SIZE
as the Media I/F will only access the memory from 0 to 512*MEDIA_NNNN#_SIZE-1.

These build options don’t apply to the Memory-Drive; MEDIA_MDRV_SIZE has its own definition.

3.1.10 MEDIA_MDRV_SIZE
The Media I/F supports a memory drive; i.e. a drive located in the memory space of processor. When
MEDIA_MDRV_IDX is defined and set to a non-negative value, then MEDIA_MDRV_SIZE must be defined
defined set to a non-zero value. If MEDIA_MDRV_SIZE is positive, the value it is set to defines the size of
the memory reserved during compilation, i.e. it defines the size (number of bytes) of an array of type
uint8_t. When it is set to a negative value, it informs the Media I/F the memory drive memory is
allocated during link time. In the linker, the base address of the memory must be the symbol
G_MemDrvBase and the symbol G_MemDrvEnd must be the location immediately after the last memory
reserved for the memory drive (the size of the memory drive is then G_MemDrvEnd - G_MemDrvBase).
For more details, refer to any demo linker script files that are provided as they all have support memory
drive.

If MEDIA_MDRV_IDX is not defined or is defined with a negative value then MEDIA_MDRV_SIZE is ignored
and no memory drive is used.

3.1.11 MEDIA_ARG_CHECK
The build options MEDIA_ARG_CHECK controls if the driver checks the validity of the API function
arguments or not. This build option is a Boolean; when set to a non-zero value, the driver checks the
validity of the arguments and returns an error code when the arguments are invalid. When set to a zero
value, it does not check the validity of the arguments.

3.1.12 MEDIA_DEBUG
The build options MEDIA_DEBUG controls the printout of progress and error messages to stdout. This
build option can have three set-ups; when set to a value of zero or less, no messages are sent to stdout.
When set 1, it sends over stdout the set-up information used during initialization and causes of error
during the operation. When set to a value greater than 1, it prints on stdout all operations and causes of
errors.

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 15

4 Files
This section provides a list of the the files to be included in the application when using the Media I/F with
or without the system call layer. It also indicates some key build options to set.

The Media I/F relies on Abassi’s drivers to read and write SD/MMC and QSPI media. Therefore, if
SD/MMC is to be access, the file ???_sdmmc.c has to be included in the build and / or if QSPI is to be
accessed then the file ???_qspi.c has to be included in build.

Demos #20 to #29 can be looked at for more details on how to use the system call layer with one or
multiple file system stacks.

In the next subsections, FSSTACK is to be replaced by FatFS, FullFAT and/or ueFAT. , and COMPILER
with ARMCC, CCS and/or IAR.

4.1 Media I/F alone
To use a file system stack directly, the file system stack and the Media I/F files are required, so the files
that from the Media I/F must be included in the build

- Drivers/src/MefiaIF.c Common media API

- Driver/src/Media_FSSTACK.c File system stack specific API (FSSTACK is the name of the
file system stack).

- Abassi/Abassi_FSSTACK.c File System stack specific API for exclusive access
protection. The protection is provided through Abassi’s
mutex.

- Platform/src/???_SysCall.c Access to the real-time clock on the target platform. It is
target platform specific and the file provided in
Platform/src only supports the target platform used in
the demos. Is needed if the file system stack is set-up for
time stamping new files.

4.2 System Call Layer & Media I/F
To have access to the media through the standard “C” system calls, e.g. fopen(), fprintf(), fclose(),
the system call layer needs to be added on top of the Media I/F alone set of files. Reference [R4] provides
all the details on the System Call Layer. The files for the Media I/F standalone (Section 4.1) and the
followings need to be added in the build:

- Abassi/SysCall_FSSTACK.c File System stack specific system call layer code. This file
is the layer between the standard UINX system call and the
File System Tack API.

- Abassi/SysCall_COMPILER.c Non-GCC compilers require a complementary file to
interface between the compiler system call API and UNIX
system call API.

- Abassi/SysCall_MultiFS.c Only needed when multiple File System are used in the
same application.

The System Call Layer has a few build options described in [R4]. At minimum, the build option
OS_SYS_CALL must be defined and set to a non-zero value

4.3 Fat-FS
The files needed by Fat-FS are the following (### is the version of the file system stack) and they all need
to be included in the build to use the Fat-FS file system stack:

Share/inc/ffconf.h Fat-FS configuration file used by the demos

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 16

FatFS-###/inc/ Path for the include files used by FatFS.
FatFS-###/src/ff.c

FatFS-###/src/ffunicode.c

If re-using the configuration file (Share/inc/ffconf.h) provided with the demos, there are 3 key build
options to set with Fat-FS, namely FF_VOLUMES (previously _VOLUMES), FF_FS_LOCK (previously
_FSLOCK), and FF_FS_NORTC (previously _FS_NORTC). The build option FF_VOLUMES must be set to a
value greater or equal to the maximum number of the media devices that are supported in the application.
FF_FS_NORTC when set to zero, enables Fat-FS to use an on-board RTC for time stamping files. The file
Platform/src/SysCall_???.c likely needs to be customized for the target board. For FF_FS_LOCK,
this build options defines the maximum number of files and directories that can be opened at the same time.

4.4 FullFAT
The files needed by Full-FAT are the following (### is the version of the file system stack) and they all
need to be included in the build to use the Full-FAT file system stack:

Share/inc/ff_conf.h Full FAT configuration file used by the demos

FullFAT-###/src/ Path for the include files used by Full-FAT it is src, not
inc)

FullFAT-###/src/ff_blk.c

FullFat-###/src/ff_crc.c

FullFat-###/src/ff_dir.c

FullFat-###/src/ff_error.c

FullFat-###/src/ff_fat.c

FullFat-###/src/ff_file.c

FullFat-###/src/ff_format.c

FullFat-###/src/ff_hash.c

FullFat-###/src/ff_ioman.c

FullFat-###/src/ff_memory.c

FullFat-###/src/ff_string.c

If re-using the configuration file (Share/inc/ff_conf.h) provided with the demos, there are a single
key build options to set with Full-Fat, namely FF_TIME_SUPPORT. When it is not defined it informs Full
FaAT to not rely in a RTC for time stamping files. When defined, it enables Full-FAT to use an on-board
RTC for time stamping files. The file Platform/src/SysCall_???.c likely needs to be customized
for the target board.

NOTE: Full-FAT has a reported issue and it cannot format media drives. Another File System stack must
be used if the application needs to perform the formatting of media devices.

4.5 ueFAT
The files needed by FatFS are the following (### is the version of the file system stack) and they all need
to be included in the build to use the FatFS file system stack:

Share/inc/fat_opts.h Ultra Embedded FAT configuration file used by the demos

ueFAT-###/ Path for the include files used by ueFAT
ueFAT-###/fat_access.c

ueFAT-###/fat_cache.c

ueFAT-###/fat_filelib.c

ueFAT-###/fat_format.c

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 17

ueFAT-###/fat_misc.c

ueFAT-###/fat_string.c

ueFAT-###/fat_table.c

ueFAT-###/fat_write.c

If re-using the configuration file (Share/inc/fat_opts.h) provided with the demos, there are a single
key build options to set with ueFAT, namely FATFS_INC_TIME_DATE_SUPPORT. When defined and set to
a non-zero value it enables ueFAT to use an on-board RTC for time stamping files. The file
Platform/src/SysCall_???.c likely needs to be customized for the target board.

NOTE: ueFAT can only access a single drive. To access multiple drives it is necessary to go through un-
mount and mount. Also, ueFAT does not use the FAT info for the number of bytes per sectors,
instead it operates with the sector size defined through the build option FAT_SECTOR_SIZE.

Abassi RTOS Media I/F 2018.09.27

Rev 1.3 Page 18

5 References
[R1] Abassi RTOS – User Guide, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] µAbassi RTOS – User Guide, available at http://www.code-time.com
[R4] Abassi – System Call Layer, available at http://www.code-time.com

