
Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

80251 – Keil Compiler

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Keil Software, the Keil Software Logo and Vison are registered trademarks of Keil Elektronik GmbH / Keil Software Inc. All other
trademarks are the property of their respective owners.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6
1.3 NOTES ... 7

2 TARGET SET-UP .. 8

2.1 ABOUT THE STACK ...10
2.2 START251.A51 MODIFICATIONS ..11
2.3 DATA ZEROING / DATA MODELS ...11

2.3.1 XTiny data model ...12
2.3.2 XSmall data model ...12
2.3.3 Large data model ...13
2.3.4 Zeroing changes ..13

3 INTERRUPTS ...14

3.1 INTERRUPT INSTALLER ...15
3.2 2 OR 4 BYTES INTERRUPT CONTEXT ..16
3.3 HYBRID INTERRUPT STACK ..16
3.4 FAST INTERRUPTS ...17

4 STACK USAGE...18

5 SEARCH SET-UP ...19

6 CHIP SUPPORT ...21

6.1 TIMERS / COUNTERS ...21
6.1.1 TimerInit() ...22
6.1.2 TIM80251_RLD() ..24

6.2 SERIAL PORT ..25
6.2.1 SerialInit() ...26

7 MEASUREMENTS ...28

7.1 MEMORY ..28
7.2 LATENCY ..32

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...41

8.1 CASE 0: MINIMUM BUILD ...41
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..42
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...43
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND44
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..45
8.6 CASE 5: + EVENTS / MAILBOXES ..46
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...47
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..48
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...49

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 4

List of Figures
FIGURE 2-1 LARGE DATA AND LARGE CODE SET-UP .. 8
FIGURE 2-2 REENTRANCE SELECTION ... 9
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...28
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...32

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 OS_ROM_MODEL .. 9
TABLE 2-2 EFFECT OF OS_MIN_STACK_USE ON LARGE DATA MODEL ...10
TABLE 2-3 START251.A51 ORIGINAL LINES ...11
TABLE 2-4 START251.A51 MODIFIED LINES ...11
TABLE 2-5 START-UP DATA SECTION ZEROING ...12
TABLE 3-1 PRE-ISR DISPATCHER CODE ..14
TABLE 3-2 DISTRIBUTION INTERRUPTS ..15
TABLE 3-3 INVALIDATING AN ISR HANDLER ..15
TABLE 3-4 INTERRUPT SET-UP ..16
TABLE 3-5 OS_ISR_STACK ...16
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...18
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..19
TABLE 6-1 TIMER #0 USED BY THE RTOS ..21
TABLE 6-2 TIMER #1 USED BY THE RTOS ..21
TABLE 6-3 TIMER #2 USED BY THE RTOS ..21
TABLE 6-4 SERIAL PORT SET-UP EXAMPLE ...25
TABLE 7-1 “C” CODE MEMORY USAGE (XTINY DATA MODEL) ...29
TABLE 7-2 “C” CODE MEMORY USAGE (XSMALL DATA MODEL) ..30
TABLE 7-3 “C” CODE MEMORY USAGE (LARGE DATA MODEL) ...31
TABLE 7-4 ASSEMBLY CODE MEMORY USAGE ...31
TABLE 7-5 MEASUREMENT WITHOUT TASK SWITCH ..33
TABLE 7-6 MEASUREMENT WITHOUT BLOCKING ...33
TABLE 7-7 MEASUREMENT WITH TASK SWITCH ..33
TABLE 7-8 MEASUREMENT WITH TASK UNBLOCKING ..34
TABLE 7-9 LATENCY MEASUREMENTS (XTINY DATA / LARGE CODE) ..35
TABLE 7-10 LATENCY MEASUREMENTS (XSMALL DATA / LARGE CODE) ...36
TABLE 7-11 LATENCY MEASUREMENTS (LARGE DATA / LARGE CODE) ..37
TABLE 7-12 LATENCY MEASUREMENTS (XTINY DATA / HUGE CODE) ..38
TABLE 7-13 LATENCY MEASUREMENTS (XSMALL DATA / HUGE CODE) ...39
TABLE 7-14 LATENCY MEASUREMENTS (LARGE DATA / HUGE CODE) ..40
TABLE 8-1: CASE 0 BUILD OPTIONS ..41
TABLE 8-2: CASE 1 BUILD OPTIONS ..42
TABLE 8-3: CASE 2 BUILD OPTIONS ..43
TABLE 8-4: CASE 3 BUILD OPTIONS ..44
TABLE 8-5: CASE 4 BUILD OPTIONS ..45
TABLE 8-6: CASE 5 BUILD OPTIONS ..46
TABLE 8-7: CASE 6 BUILD OPTIONS ..47
TABLE 8-8: CASE 7 BUILD OPTIONS ..48
TABLE 8-9: CASE 8 BUILD OPTIONS ..49

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 6

1 Introduction

This document details the port of the Abassi RTOS on the 80251 family of microcontrollers. The software

suite used for this specific port is the Keil C251 compiler, assembler, linker, and simulator suite, better

known as Vision V5.50.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_80251_KEIL.a51 RTOS assembly file for the 80251 with Keil compiler

sio80251.h Include file for the serial port driver

sio80251.c Source file for the serial port driver

tim80251.h Include file for the timer driver

tim80251.c Source file for the timer driver

START251.A51 Modified standard start-up code

1.2 Limitations

There are a few limitations when using the Abassi RTOS built with the Keil compiler suite for the 80251.

Only the Large and Huge ROM code models are supported. Abassi cannot fit in any of the other code

models, as under some build configurations the Abassi kernel single function is larger than 2Kbytes. Also,

only the XTiny, XSmall, and Large data memory models are supported, as the amount of data needed in

most multi-tasking applications exceeds the amount of the internal RAM available on most 80251 devices;

by default, the XTiny and XSmall data memory models use the internal data memory. Finally, the code

must be generated as re-entrant.

Contrary to most other ports, for the 80251 main(), or the Adam&Eve task, must have stack room

allocated to it when the Large data memory model is selected. The reason is the Adam&Eve task cannot

use the default “C” start-up stack, which is the internal stack, as the internal stack is used by all tasks. See

Section 2.1 for more information about this limitation.

The interrupt hybrid stack feature is supported by this port, but only for the XTiny and XSmall data

models. In the case of the Large data model, the internal stack acts exactly as a hybrid stack from the point

of view of the task stack usage, therefore the hybrid stack is not made available for the Large data model as

it would be redundant.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 7

1.3 Notes

Unless the external memory is physically located at base address 0x010000, the use of the Large data

model (for both the large and huge code models) should be avoided, as it is the data model that creates the

largest code footprint and also delivers the slowest execution. This is already stated in the Keil C251 user

guide.

Depending on the RTOS configuration, one or more compiler warnings could be issued when the selected

data model is XSmall or Large. The warning(s) is/are one of the followings:

Abassi.c (xxx): warning C153: “!=”: different spaced pointers (far, xdata)

Abassi.c (xxx): warning C153: “!=”: different spaced pointers (far, edata)

The assembly code generated that triggers these warnings has been verified and the Abassi code will

operate without problems for all supported data and code models.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 8

2 Target Set-up

Very little is needed to set-up the Keil build environment to use the Abassi RTOS in an application. The

first thing to do is to set the build to generate code for the desired data model. In the “Options for Target”

select the “Target” tab and set the Memory Model to “XTiny: near vars & const, ptr-2”, or to “XSmall:

near vars, far const, ptr-4”, or to “Large: xdata vars, far const, ptr-4”. Then, set the Code ROM Size to

either “Large: 64K program” or to “Huge: 64K functions, 16M prog”. When selecting the XTiny or

XSmall data models, the external RAM must be specified in the bottom part of the window in the

“External Memory” sub-window. A snapshot of the window is shown in Figure 2-1:

Figure 2-1 Large Data and Large code set-up

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 9

The second set-up is to disable the data overlay feature of the linker by informing the compiler to generate

re-entrant code. If the data overlay is not disabled for an application using the Abassi RTOS, the linker

could make multiple parts of the code reuse areas of the data space, and, as the linker is not aware of the

multiple tasks in the application, there are possible run-time conflicts where one task cold reuse some of the

data area of another one. In the “Options for Target” select the “C251” tab and select the “Generate

reentrant functions” button. A snapshot of the window is shown in Figure 2-2 below:

Figure 2-2 Reentrance selection

The assembly support file must also be configured for the data model and the code ROM model that is

selected for the compiler. In the file Abassi_80251_KEIL.a51, at around line 25, there is a definition for

OS_CODE_MODEL and OS_DATA_MODEL, as shown in the following table:

Table 2-1 OS_ROM_MODEL

OS_CODE_MODEL EQU 0 ; Code model 0:Large / 1:Huge

OS_DATA_MODEL EQU 0 ; Data model 0:XTiny / 1:XSmall / 2:Large

Set the value of OS_CODE_MODEL to 0 if the Large Code ROM model is used, or set it to 1 if the Huge

Code ROM model is used. If the wrong code model is selected, link-time errors will be issued because the

function names will not match Keil’s code model naming conventions.

Set the value of OS_DATA_MODEL to 0 if the XTiny data model is used, set it to 1 if the XSmall data model

is used, or set it to 2 if the Large data model is used. Contrary to the code ROM model, if the wrong data

model is selected, link-time errors may not be issued.

NOTE: Some functions in the Keil C runtime library are not multithread-safe. If these functions are only

used in one task, then there will be no problems. But if they are used by more than one task, they

need to be protected by an Abassi mutex. The preferred way is to re-use the G_OSmutex for all

non-multithread-safe function, as this will avoid deadlocks.

A final set-up is needed to match the interrupt context save configuration used by Abassi interrupt

dispatcher to match the set-up of the device according to the flash off-chip configuration. Refer to section

3.2 for this.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 10

2.1 About the stack

When an application is configured for the XTiny or XSmall data model, the context switch of the RTOS

operates the same way as all other processor ports. What happens during a context switch for these two

data models involves saving the stack pointer in the current task descriptor and restoring it from the

descriptor of next task to run. But when the Large data model is selected, there is an important restriction

that does not allow the swapping of the stack pointers. The Large data model (when not using the near or

far declarations) handles, by default, the external memory between addresses 0x010000 and 0x01FFFF.

The stack pointer is a 16-bit register, therefore it is only able to access memory below address 0x010000.

So only the internal memory can be used for the stack, and as the internal memory is too small to hold all

the tasks stacks, another approach was required.

For the Large data model, when a context switch occurs, it is necessary to copy the 80251 internal stack

into the currently running task’s stack and copy the contents from the next to run task’s stack back to the

internal stack. This means the size of the internal stack, defined in START251.A51 (look for the token

STACKSIZE) must be set to a value larger or equal to the largest stack size of all the tasks in the

application; it may be larger to handle the interrupt nesting stack requirements as these are not needed to be

held in the task stacks. The stack contents copying is not a lightweight operation: simulated on an Intel

8xC251TA, each byte to copy from the internal stack requires on average 14.5 cycles and each byte to copy

to the internal stack requires 14 cycles.

As each task must hold its own copy of the internal stack contents, Adam & Eve cannot use the default start

stack for itself, as this stack is the internal data area reserved for the stack. To overcome this limitation, the

build option OX_AE_STACK_SIZE is used to define how much stack room needs to be allocated to

Adam&Eve. This option is not part of the standard Abassi build options, but is instead only declared inside

the file Abassi.h. As supplied, this value is set to 512 bytes, meaning the stack reserved for Adam&Eve

has a dimension of 512 bytes
1
; modify the value of this token according to your application (make sure the

definition that is modified is right after a #elif defined(__C251__) declaration).

NOTE: If the XTiny or the XSmall data models are selected, set the value of OX_AE_STACK_SIZE to 0

otherwise the memory reserved for the Adam&Eve stack is simply wasted, as it is not used with

these two data models.

The Abassi RTOS allows shrinkage of the amount of stack used by the kernel by setting the build option

OS_MIN_STACK_USE to a non-zero value. For the Large data model, it is strongly advised to set this build

option to non-zero, otherwise the context save and restore (copying) of the stack used by the kernel could

represent a large portion of the CPU requirements. For example, a simulation the 8xC251TA part for the

search algorithm (table look-up, 1 priority level difference, very small RTOS configuration) delivers the

following cycle requirements, and the total stack usage when a context switch occurs:

Table 2-2 Effect of OS_MIN_STACK_USE on Large Data model

OS_MIN_STACK_USE setting Cycles Stack Use

Equal to 0 4130 46 bytes

Non-equal to 0 3164 20 bytes

1
 512 bytes is the default value assigned to STACKSIZE in the distribution file START251.A51.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 11

When the Abassi RTOS is configured for the full features set, the local variables that land on the stack

require 62 bytes when the Abassi RTOS is not set for minimum stack usage. When is it set to minimize the

stack usage, the local variables stack requirement is reduced to 4 bytes. In the case of the Large data

model, it was observed that the CPU impact of not having the kernel local variables on the stack is greatly

offset by the saving achieved in the context switch.

NOTE: It was observed that setting the build option OS_MIN_STACK_USE to a non-zero value for the

XTiny and XSmall data model reduces the code size generated by the compiler and it speeds-up

the operation of the RTOS. Therefore the build option OS_MIN_STACK_USE should always be set

to a non-zero value, no matter the data memory model selected.

2.2 START251.A51 Modifications

Abassi needs to be aware of the start address of the internal stack. Keil uses a standard start code that is

supplied in the file START251.A51, in which the internal stack area is declared but its starting address is

not made public. All there is to do is to add a declaration to allow the Abassi RTOS to know where the

base of the internal stack is located. You will find the following declaration in the standard

START251.A51 file:

Table 2-3 START251.A51 original lines

?STACK SEGMENT EDATA

 RSEG ?STACK

 DS STACKSIZE

Add these two lines as indicated:

Table 2-4 START251.A51 modified lines

?STACK SEGMENT EDATA

 RSEG ?STACK

 PUBLIC START?STACK

START?STACK:

 DS STACKSIZE

And that’s it. The distribution code contains a copy of START251.A51 file properly modified. If an

unmodified standard START251.A51 file is used, a link-time error will occur as the public symbol

START?STACK will be missing.

2.3 Data Zeroing / Data models

The standard start-up file could be configured to zero the data upon start-up. In the distribution, this feature

was not enabled, as the size and addresses of the data RAM are target dependent. As the data is not zeroed,

Abassi is configured by default to initialize the internal variables that must be set to zero at startup. The

zeroing of the data adds over 130 bytes of code when all the RTOS features are enabled. It is advised to

turn on the data zeroing of the data in order to reduce the code size. Table 2-5 lists the available data space.

Setting the ?DATALEN to non-zero will zero the specified number of bytes in the associated section upon at

start-up.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 12

Table 2-5 Start-up data section zeroing

Start Length Description Maximun value

n/a EDATALEN Internal data 0FFFFH

XDATASTART XDATALEN External data @ address 010000H 0FFFFH

HDATASTART HDATALEN External data (anywhere) 100000H

How the different sections are used according to the data memory model is a bit confusing. In short, the

following sub-sections describe what happens with the target RAM set-up. The explanation does not take

in account the modification Keil’s HOLD() declaration modifies. The RAM target set-up is at the bottom of

the “Options for Target” / “Target” tab window. Except for the Large data model, where the memory area

between 0x010000 and 0x01FFFF is declared internal by default, all other memory areas must be declared

in the “External Memory” sub-window of the “Target” window (see Section 2).

2.3.1 XTiny data model

The XTiny model uses the EDATA section for all the non-far declared variables; it is able to access more

than 64K of data, but the variables outside the lower 64K (addresses 0x000000 to 0x00FFFF) must be

declared far. The difference between the XTiny and XSmall data models is that the XTiny data model

uses 16 bit data pointers for all variables except the ones declared far, and then 24 bit pointers are used.

Internally, the compiler and linker never assign more than 64K to the EDATA section; all memory defined

with addresses between 0x000000 and 0x00FFFF are assigned to the EDATA section. For the XTiny data

model, the HDATA section (that inherits all data memory) overlaps the EDATA sections.

As the source code for Abassi is multi-platform, it does not use the near or far keywords. As such, all

variables of Abassi are located in the EDATA section, including the task stacks, meaning there are no issues

and no required special care to apply when using the XTiny model.

There is some confusion on why choosing the XTiny versus the XSmall data model. The answer is quite

simple: in the XTiny data model, if pointers or addresses of variables declared far are used as regular

pointers, then the upper 8 bits of the 24 bit address are ignored. This means, for example, it is not possible

to use any of the “C” standard library functions with a far pointer as a function argument; e.g. strcmp()

or strcpy(). The XSmall data model does not have the mismatch issue with the near and far addresses.

2.3.2 XSmall data model

The XSmall model uses the EDATA section for all the non-far declared variables; it is able to access more

than 64K of data, but the variables outside the lower 64K (addresses 0x000000 to 0x00FFFF) must be

declared far. The difference between the XTiny and XSmall data models is that the XSmall data model

uses 24 bit data pointers for all variables except the ones declared near, and then 16 bit pointers are used

when appropriate. Internally, the compiler and linker never assign more than 64K to the EDATA section; all

memory defined with addresses between 0x000000 and 0x00FFFF are assigned to the EDATA section. For

the XSmall data model, the HDATA section (that inherits all data memory) overlaps the EDATA sections.

As the source code for Abassi is multi-platform, it does not use the near or the far keywords. As such, all

variables of Abassi are located in the EDATA section, including the task stacks, meaning there are no issues

and no special care to apply when using the XSmall model.

See the previous section for an explanation on the reason to select the XSmall data model over the XTiny

model.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 13

2.3.3 Large data model

The Large model uses the XDATA section for all the non-far / non-near declared variables; it is able to

access more than 64K of data, but the variables outside the basic 64K (addresses 0x010000 to 0x01FFFF)

must be declared either near (for the addresses between 0x000000 and 0x00FFFF) or declared far (for the

whole 16M data address space). The difference between the Large model and the two other ones is the

non-near / non-far declared variables are accessed through the DPTR and Keil assigns a value of 1 to the

DPXL (upper byte of the DTPR). In the Large data model, the XDATA section cannot be modified; it is

always at base address 0x010000 and its length is always 0x10000.

For the Large memory model, there cannot be any issues with the location of the task stacks, as the stack

pointer never directly uses these memory areas.

2.3.4 Zeroing changes

Once the START251.A51 is modified to zero the data RAM, then, in the file Abassi.h, set the value of the

build token OX_BSS_ZEROED to 1 (make sure the definition that is modified is right after a #elif

defined(__C251__) declaration). This later change will remove the code that zeroes Abassi’s internal

variable at start-up.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 14

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed within or outside an interrupt

context. Normally an interrupt function is specified in Keil’s compiler by adding the postfix “interrupt

K using N”. But for all regular interrupts (this does not apply to the fast interrupts), the Abassi RTOS

provides an interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals.

First, the kernel uses it to be aware if a request occurs within an interrupt context or not. Second, using this

dispatcher reduces the code size, as all interrupts share the same code for the context save and restore

needed for an interrupt.

Out of the box there are provisions for 7 sources of interrupts, as specified by the build option

OS_N_INTERRUPTS defined in the file Abassi.h. This build option is not part of the generic RTOS build

options, as it is processor specific. Therefore, its value is set according to the specific compiler and

processor port. The basic 80251 compatible device has 7 sources of interrupts. 1 extra source has been

provided as an example when more interrupts need to be handled. This is provided because today’s 80251

comes in many variants, and most of the modern ones add one or more extra interrupt source over the

legacy device.

The following snippet of code, extracted from the file Abassi_80251_Keil.a51, around line 135, shows

the code used for the extra interrupt:

Table 3-1 Pre-ISR dispatcher code

 ; --

 ORG 0FF:003BH ; For 80251 variants with extra interrupts

 ISR_HNDL 7 ; Add as many of these as it is needed

 ; Change the ORG address to the required value

 ; Set the 7 for #, and add anothr ISR_JUMP

 …

 ISR_JUMP 7

The first statement, ORG 0FF:003BH, informs the linker to locate the code at the physical address

0xFF003B. If the new interrupt to add uses a different vector, simply replace 0FF:003BH with the

appropriate address. The second statement is the macro ISR_HNDL that sets-up the initial part of the

pre-ISR dispatch. A second macro is also needed, ISR_JUMP, and that one is for the second part of the

pre-ISR dispatch; there must always be a pair of ISR_HNDL and ISR_JUMP for every interrupt number

added (non-fast interrupts). In the above example the interrupt number is 7.

If more than one extra interrupt needs to be added, then all there is to do is to follow these steps:

1. Define and set OS_N_INTERRUPTS to the correct value;

2. Insert the two pre-ISR dispatch macros as many times as needed;

3. For each duplicated macros, set the correct address in the ORG statement;

4. For each duplicated macro pairs, assign a unique interrupt number (<OS_N_INTERRUPTS).

Remember that interrupt numbers start with an index of zero, so that setting OS_N_INTERRUPTS to a given

value allows for interrupt numbers in the range 0…(OS_N_INTERRUPTS-1).

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 15

Table 3-2 Distribution Interrupts

Interrupt Number Interrupt Vector Address Description

0 0xFF0003 External 0

1 0xFF000B Timer / Counter 0

2 0xFF0013 External 1

3 0xFF001B Timer / Counter 1

4 0xFF0023 Serial Port

5 0xFF002B Timer / Counter 2

6 0xFF0033 Programmable Counter Array (PCA)

3.1 Interrupt Installer

Attaching a function to an interrupt is quite straightforward. All there is to do is use Abassi’s component

ISRinstall() to specify the interrupt number and the function to be attached to that interrupt number:

#include “Abassi.h”

 …

 ISRinstall(Number, &ISRfct);

 Set-up the interrupt

The function to attach to the interrupt (ISRfct(), here) is and must always be a regular function.

NOTE: It is a regular function, not one declared with the Keil specific “interrupt K using N” postfix

statement.

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function named OSinvalidISR(). If an interrupt function is attached to an interrupt

vector using the ISRinstall() component before calling OSstart(), this attachment will be removed

by OSstart(), so ISRinstall() must never be used before OSstart() has ran. When an interrupt

handler is removed, it is very important and necessary to first disable the interrupt source, then the handling

function should be set back to OSinvalidISR(). This is shown in the next table:

Table 3-3 Invalidating an ISR handler

#include “Abassi.h”

 …

 ISRinstall(Number, &OSinvalidISR);

 …

A better example with a real interrupt initialization function is shown in Section 6.1.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 16

3.2 2 or 4 bytes interrupt context

The 80251 can enter an interrupt in two different ways: either pushing 2 bytes or pushing 4 bytes on the

internal stack. This configuration is part of the Flash off-chip configuration (bit INTR in the CONFIG1

register), which is not accessible to the application. In START251.A51, Keil allows the building process to

put the contents of the off-chip configuration registers at addresses 0xFFFFF8 and 0xFFFFF9, but Abassi

does not rely on these values. Instead, the assembly file must be configured to handle interrupts with 2 or 4

bytes. To set-up the interrupt dispatcher to match the number of bytes saved by the processor upon

responding to an interrupt, set the following statement in the file Abassi_80251_Keil.a51, located

around line 30:

Table 3-4 Interrupt set-up

OS_INTR_TYPE EQU 2 ; Setting of the INTR bit in CONFIG1 register

 ; CONFIG1 is not user accessible, use build time

 ; 2: 2 bytes / 4: 4 bytes

To use a 2 byte interrupt context save, set OS_INTR_TYPE to a value of 2 as shown above. For a 4 byte

interrupt context save, set OS_INTR_TYPE to a value of 4.

3.3 Hybrid Interrupt Stack

It is possible with the XTiny and the XSmall data models, and is highly recommended, to use a hybrid

stack when nested interrupts occur in an application. Using this hybrid stack, specially dedicated to the

interrupts, removes the need to allocate extra room to the stack of every tasks in the application to handle

the interrupt nesting (the 80251 can nest up to 4 interrupts). This feature is controlled by the value set by

the definition OS_ISR_STACK, located around line 35 in the file Abassi_80251_KEIL.a51. To disable

this feature, set the definition of OS_ISR_STACK to a value of zero. To enable it, and specify the hybrid

interrupt stack size in bytes, set the definition of OS_ISR_STACK to the desired size in bytes (see Section 4

for information on stack sizing). As supplied in the distribution, the hybrid stack feature is enabled and a

size of 256 bytes is allocated; this is shown in the following table:

Table 3-5 OS_ISR_STACK

OS_ISR_STACK EQU 256 ; If using a dedicated stack for the nested ISRs

 ; 0 if not used, otherwise size of stack in bytes

 ; This option is ignored for the Large data model

NOTE: The setting of OS_ISR_STACK is ignored when the application is configured for the Large data

model.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 17

3.4 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from Abassi, and as the name says, is desired to operate as fast as possible. If an Abassi component is used

in a fast interrupt, the application could misbehave. To set-up a fast interrupt, all there is to do is to

comment or remove the two pre-dispatcher macros (ISR_HNDL and ISR_JUMP) related to the interrupt

number to be set as a fast interrupt. This is the snippet of code shown in Table 3-1. The Keil interrupt

function to attach to this fast interrupt must be specified by adding the postfix “interrupt K using N”.

Because the Abassi ISR dispatcher is not involved in a 80251 fast interrupt, attaching the interrupt function

handler with the component ISRinstall() becomes useless.

NOTE: A fast interrupt handler is NOT a regular function, as such, it must be declared with the Keil

specific “interrupt K using N” postfix statement. Abassi’s interrupt dispatcher must not

handle fast interrupt.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 18

4 Stack Usage

When a task is blocked, or ready to run but not running, the stack holds the register context that was

preserved when the task got blocked or preempted. For the 80251, the context save contents of a blocked

or pre-empted task is completely different from the one used in an interrupt. The following table lists the

number of bytes required by each type of context save operation. The size of the interrupt context save

does not include the 2 or 4 bytes the processor pushes on the internal stack.

Table 4-1 Context Save Stack Requirements

Description Context save

Blocked/Preempted task context save (excluding the internal stack) (Large Model) 8 bytes

Blocked/Preempted task context save (excluding the internal stack) (Huge Model) 9 bytes

Interrupt dispatcher context save (IRQ stack) (2 bytes interrupt) 39 bytes

Interrupt dispatcher context save (IRQ stack) (4 bytes interrupt) 41 bytes

As explained in Section 2.1, the build option OS_MIN_STACK_USE should be set to a non-zero value to

minimize the amount of stack the kernel uses.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 19

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_ALGO offers three different algorithms to quickly determine

the next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The second

column is when OS_SEARCH_ALGO is set to zero, meaning simple array traversing. The third column,

named Look-up, is when OS_SEARCH_ALGO is set to 1, which uses an 8 bit look-up table. Finally, the last

column is when OS_SEARCH_ALGO is set to 4 as Keil compiler int are 16 bits, meaning a 16 bit look-up

table further searched through successive approximation. The 80251’s instruction set is different from the

8051; even though the accumulator is an 8 bit register, the 80251 supports almost all arithmetic operations

on 16 bits.

The numbers provided were obtained using the Keil simulator with an Intel 8xC251TA part. The build was

set to the XTiny data model and the Large code model, and the option OS_MIN_STACK_USE was set to a

non-zero value. It is assumed the other data and code models will deliver the same relative performance

across the range of search algorithm. When the build option OS_SEARCH_ALGO is set to a negative value,

indicating to use a 2-dimensional linked list search technique instead of the array based search, the number

of CPU cycles is constant at 1260 cycles. One must remember the following numbers are dependent on the

data and code model. The relative values between the 3 tests are more important that their values as such.

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 1246 1418 1830

2 1296 1466 1842

3 1346 1514 1890

4 1396 1562 1866

5 1446 1610 1914

6 1496 1658 1926

7 1546 1706 1974

8 1596 1422 1914

10 1646 1470 1962

11 1696 1518 1974

12 1746 1566 2022

When OS_SEARCH_ALGO is set to 0, each extra priority level to traverse requires 50 CPU cycles. When

OS_SEARCH_ALGO is set to 1, each extra priority level to traverse requires 48 CPU cycles, except when the

priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage. Overall, setting

OS_SEARCH_ALGO to 1 adds around 170 cycles of CPU for the search compared to setting

OS_SEARCH_ALGO to zero. But when the next ready to run priority is less than 8, 16, … then there is an

about the same number cycles needed, but without the 8 times 48 cycle accumulation. Finally, the third

option, when OS_SEARCH_ALGO is set to 3, delivers a quasi-constant CPU usage (around 1930), as the

algorithm utilizes a successive approximation search technique; as the 80251 do not have a barrel shifter,

the resulting CPU variation is around +/- 100 cycles.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 20

The first observation, looking at this table, is that the first option, when OS_SEARCH_ALGO is set to 0, is the

most CPU efficient when the priority span is less than 8. For more than 8 priority spans, the second option

(when OS_SEARCH_ALGO is set to 1) becomes more CPU efficient than the first option, but only for the

priority span greater than 7. The third option (when OS_SEARCH_ALGO is set to 5) is always less efficient

than the second option; therefore the third option should never be selected.

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, and not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 21

6 Chip Support

There are a multitude of variants for the 80251, so the chip support that is offered with the Abassi RTOS is

limited to the peripherals of the original 80251; that is: 3 timers and a single serial port, excluding the PCA

(Programmable Counter Array). This is not a full Board Support Package (BSP); it is only a few functions

that have been used to port the RTOS on the 80251, and they are made available in the code distribution.

6.1 Timers / Counters

The timer driver offers a simple way to program each of the basic timers /counters available in the 80251

microcontroller to generate a periodic interrupt. Special care was taken to compensate the value reloaded

in the timer to take into account the time elapsed between the triggering of the interrupt and the set-up for

timer 0 and 1. Timer 2 has an automatic reload capability.

For the timer used by the RTOS when either build option OS_TIMEOUT or OS_ROUND_ROBIN are non-zero,

the timer can be set-up with the “C” expression in Table 6-1 and Table 6-2 below. The period (second

argument) must be the token OS_TIMER_US remapped with the macro TIM80251_RLD() as this token is

what the RTOS was configured with when built, and the callback function (third argument) must be

TimTick(), which is the RTOS timer internal maintenance function.

This example installs the interrupt vector and programs timer #0 as the RTOS timer:

Table 6-1 Timer #0 used by the RTOS

 ISRinstall(1, &HWItim80251_0);

 TimerInit(0, TIM80251_RLD(OS_TIMER_US), 1, &TimTick, 0);

Or if timer #1 is preferred:

Table 6-2 Timer #1 used by the RTOS

 ISRinstall(3, &HWItim80251_1);

 TimerInit(1, TIM80251_RLD(OS_TIMER_US), 1, &TimTick, 0);

Or if timer #2 is preferred:

Table 6-3 Timer #2 used by the RTOS

 ISRinstall(5, &HWItim80251_2);

 TimerInit(2, TIM80251_RLD(OS_TIMER_US), 1, &TimTick, 0);

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 22

6.1.1 TimerInit()

Synopsis

#include “tim80251.h”

void TimerInit(int TimNmb, int Period, int Prio, void(*Callback)(void),

 int OneShot);

Description

TimerInit() is a utility that programs a timer of a 80251 compatible device to generate either a

periodic interrupt or a one time interrupt. The function allows the attachment of a function to call

when the interrupt occurs.

Availability

Keil 80251 port only.

Arguments

TimNmb Timer to program.

Value must be 0, 1, or 2.

Period Desired period (when OneShot == 0) or desired elapsed time (when OneShot

!= 0).

Specified in timer ticks count.

Prio Interrupt priority.

Value must be 0 or 1 or 2 or 3. If not, only the 2 LSbits are used.

CallBack Function to call when the timer interrupt occurs.

NULL indicates to not call a function after the interrupt.

OneShot When zero, program the timer to generate a single interrupt upon completion.

When non-zero, program the timer to generate a periodic interrupt.

Returns

void

Component type

Function

Options

Notes

When a timer is used for the serial port, do not program it with TimerInit(); SerialInit()

takes care of initializing the timer it uses.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 23

See also

TIM80251_RLD() (Section 6.1.2)

SerialInit() (Section 6.2.1)

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 24

6.1.2 TIM80251_RLD()

Synopsis

#include “tim80251.h”

int TIM80251_RLD(long TimeUS);

Description

TIM80251_RLD() is a utility that converts a time from microseconds into a number of timer ticks.

Availability

Keil 80251 port only.

Arguments

TimeUS Time to convert into number of timer ticks.

Specified in s units.

Returns

int Number of timer ticks.

Component type

Macro definition

Options

Notes

The processor clock must be specified with the token OS_CPU_FREQ; the value indicates the

processor clock in Hz. This token is defined in Abassi.h but can be deleted and added on the

compiler command line instead.

See also

TimerInit() (Section 6.1.1)

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 25

6.2 Serial Port

As with the timers, the serial port driver provides a simple way to program the serial port. Using the driver

allows using the serial port in polling mode or in interrupt mode. When the interrupt mode is selected, an

internal circular buffer holds the characters to transmit and the newly received characters. The user does

not need to add or set-up anything, except installing the interrupt function handler. The programming of

the serial port is always set to 8 data bit, 1 stop bit and no parity.

This example installs the interrupt vector, set the interrupt to priority 0, programs the serial port to use

timer 1, sets the baud rate to 19200 bps, and selects interrupt mode.

Table 6-4 Serial Port set-up example

 ISRinstall(4, &HWIsio80251);

 SioInit(19200, 1, 1, 0);

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 26

6.2.1 SerialInit()

Synopsis

#include “sio80251.h”

void SerialInit(int BaudRate, int UseISR, int TimNmb, int Prio);

Description

SerialInit() is a utility that programs the serial port (UART) of the 80251.

Availability

Keil 80251 port only.

Arguments

BaudRate Baud rate to set the serial port to.

UseISR Boolean indicating if the serial port operates in polling mode or interrupt mode.

Zero is polling; non-zero is ISR.

TimNmb Timer to use for the serial port.

Value must be 0, 1, or 2.

Prio Interrupt priority.

Value must be 0 or 1 or 2 or 3. If not, only the 2 LSbits are used

Returns

void

Component type

Function

Options

Including the file sio80251.c in the build adds Keil’s required ___getchar(), ___putchar()

I/O function and not so standard GetKey() function.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 27

Notes

The processor clock must be specified with the token OS_CPU_FREQ; the value indicates the

processor clock in Hz. This token is defined in Abassi.h but can be deleted and added on the

compiler command line instead.

Baud rate choices are limited to those that satisfy (OS_CPU_FREQ/(192*BaudRate)) such that it

yields an integer value (or very close).

When a timer is used for the serial port, it should never be programmed with TimerInit().

When the serial port operates in interrupt mode, an internal circular buffer is used. If the token

OS_SIO_BUF_SIZE is not defined, a buffer of 16 entries is used. If OS_SIO_BUF_SIZE is

defined, it must be a power of 2 value.

When using interrupts for the serial port, when the transmit internal buffer is full, it possible to

configure the serial port driver to wait for room in the buffer or to drop the request. By default, it

is set to wait for room in the buffer. To change this to dropping the request, set the exported

variable G_SerialWait4room to a value of 0. The data type of SerialWait4room is declared

in sio80251.h.

See also

TimerInit() (Section 6.1.1)

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 28

7 Measurements

This section gives an overview of the memory usage and latency when the RTOS is used on the 80251.

The CPU cycles are the processor clock cycles; not the “x12” used by the original Intel 8051/8052, where a

full instruction cycles requires 12 transitions of the processor clock.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

The memory required by the RTOS code includes the “C” code and assembly language code used by the

RTOS. The code optimization settings of the compiler that were used for the memory measurement are:

1. Level: 9 (Rearrange Code to maximize Common Blocks)

2. Emphasis: Favor code size

Figure 7-1 Memory Measurement Code Optimization Settings

The build option OS_MIN_STACK_USE was set to a non-zero value (minimizing the amount of stack used

by the kernel) as it is the most real-time efficient for the Large data model and, at the same time, it also

delivers the smallest code size for the XTiny and XSmall data models. Also, the data was not zeroed at

start-up; some code space saving will be achieved by zeroing the data upon start-up (see Section 2.2).

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 29

Table 7-1 “C” Code Memory Usage (XTiny data model)

Description Large code Size Huge code size

Minimal Build < 1150 bytes < 1175 bytes

+ Runtime service creation / static memory < 1425 bytes < 1500 bytes

+ Multiple tasks at same priority < 1650 bytes < 1700 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 2650 bytes < 2800 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 3775 bytes < 3825 bytes

+ Events

+ Mailbox

< 5025 bytes < 5100 bytes

Full Feature Build (no names) < 6050 bytes < 6150 bytes

Full Feature Build (no names / no runtime creation) < 5600 bytes < 5625 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 6325 bytes < 6350 bytes

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 30

Table 7-2 “C” Code Memory Usage (XSmall data model)

Description Large code Size Huge code size

Minimal Build < 1325 bytes < 1350 bytes

+ Runtime service creation / static memory < 1700 bytes < 1750 bytes

+ Multiple tasks at same priority < 2025 bytes < 2075 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 3300 bytes < 3350 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 4525 bytes < 4575 bytes

+ Events

+ Mailbox

< 5925 bytes < 5975 bytes

Full Feature Build (no names) < 7125 bytes < 7175 bytes

Full Feature Build (no names / no runtime creation) < 6425 bytes < 6500 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 7300 bytes < 7375 bytes

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 31

Table 7-3 “C” Code Memory Usage (Large data model)

Description Large code Size Huge code size

Minimal Build < 1875 bytes < 1900 bytes

+ Runtime service creation / static memory < 2325 bytes < 2350 bytes

+ Multiple tasks at same priority < 2800 bytes < 2800 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 4525 bytes < 4550 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 6250 bytes < 6250 bytes

+ Events

+ Mailbox

< 7925 bytes < 7925 bytes

Full Feature Build (no names) < 9500 bytes < 9475 bytes

Full Feature Build (no names / no runtime creation) < 8800 bytes < 8725 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 9925 bytes < 9925 bytes

Table 7-4 Assembly Code Memory Usage

Code Data Description Code Size

Large XTiny 2 bytes ISR 216 bytes

Large XTiny 2 Bytes ISR + Hybrid stack 291 bytes

Large XSmall 2 bytes ISR 257 bytes

Large XSmall 2 Bytes ISR + Hybrid stack 332 bytes

Large Large 2 bytes ISR 364 bytes

Huge XTiny 2 bytes ISR 235 bytes

Huge XTiny 2 Bytes ISR + Hybrid stack 314 bytes

Huge XSmall 2 bytes ISR 284 bytes

Huge XSmall 2 Bytes ISR + Hybrid stack 363 bytes

Huge Large 2 bytes ISR 394 bytes

all all 4 Bytes ISR +25 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on Code Time Technologies

website.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 32

7.2 Latency

Latency of operations has been simulated using Intel’s 8xC251TA part using Keil’s Vision simulator.

The 8xC251TA part was retained, because it is the reference part. This means that when manufacturers

create improved versions of the 80251, they always refer to the Intel part to as the benchmark to show the

performance improvement.

The code optimization settings of the compiler that were used for the latency measurements are:

1. Level: 9 (Rearrange Code to maximize Common Blocks)

2. Emphasis: Favor execution speed

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam&Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 33

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-5 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-6 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-7 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 34

The forth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-8 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that

uses the appropriate RTOS component followed by a return.

Table 7-9 through Table 7-14 list the results obtained, where the cycle count is measured using simulator

with an Intel 8xC251TA part, with the code located in RAM. As was the case for the memory

measurements, these numbers were obtained with a beta release of this RTOS port. It is possible the

released version of the port may have slightly different numbers. The measurements were performed with

the hybrid stack disabled and the two byte interrupt context save.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered after dispatch. This includes the number of cycles used by the processor to set-

up the interrupt stack and branch to the address specified in the interrupt vector table. For this

measurement, the Timer / Counter #1 is used to trigger the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” handler

function in the OSisrInstall(). The interrupt trigger was timer #1. The interrupt overhead when

entering the kernel is calculated using the results from the third and fifth tests. Finally, the OS context

switch is the measurement of the number of CPU cycles it takes to perform a task switch, without involving

the wrap-around code of the synchronization component, but it includes the call set-up. This measurement

is for the best case of task switching where the stack contains only the return address (2 bytes for the large

Code ROM model and 3 bytes for the Huge Code ROM model). Interrupt measurement were performed

using the 80251 configured with a 2 byte context save.

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 35

Table 7-9 Latency Measurements (XTiny Data / Large Code)

Description Minimal Features Full Features

Semaphore posting no task switch 570 (572) 868 (872)

Semaphore waiting no blocking 594 (596) 938 (942)

Semaphore posting with task switch 924 (1084) 1616 (1756)

Semaphore waiting with blocking 1672 (2744) 1838 (1794)

Semaphore posting in ISR with task switch 1896 (2046) 2900 (3022)

Event setting no task switch n/a 864 (868)

Event getting no blocking n/a 1120 (1124)

Event setting with task switch n/a 1780 (1920)

Event getting with blocking n/a 1972 (1928)

Event setting in ISR with task switch n/a 2780 (2904)

Mailbox writing no task switch n/a 1094 (1098)

Mailbox reading no blocking n/a 1250 (1254)

Mailbox writing with task switch n/a 2026 (2166)

Mailbox reading with blocking n/a 2114 (2070)

Mailbox writing in ISR with task switch n/a 2998 (3114)

Interrupt dispatcher latency 232 232

Interrupt overhead entering the kernel 972 (962) 1284 (1266)

Interrupt overhead NOT entering the kernel 462 462

Context switch 112 112

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 36

Table 7-10 Latency Measurements (XSmall Data / Large Code)

Description Minimal Features Full Features

Semaphore posting no task switch 664 (664) 1002 (1006)

Semaphore waiting no blocking 668 (668) 1058 (1062)

Semaphore posting with task switch 1236 (1512) 2128 (2342)

Semaphore waiting with blocking 2094 (2078) 2354 (2308)

Semaphore posting in ISR with task switch 2602 (2862) 3558 (3742)

Event setting no task switch n/a 1004 (1008)

Event getting no blocking n/a 1286 (1290)

Event setting with task switch n/a 2322 (2536)

Event getting with blocking n/a 2516 (2470)

Event setting in ISR with task switch n/a 3466 (3658)

Mailbox writing no task switch n/a 1342 (1346)

Mailbox reading no blocking n/a 1542 (1546)

Mailbox writing with task switch n/a 2700 (2914)

Mailbox reading with blocking n/a 2738 (2692)

Mailbox writing in ISR with task switch n/a 3820 (3992)

Interrupt dispatcher latency 254 254

Interrupt overhead entering the kernel 1366 (1350) 1430 (1400)

Interrupt overhead NOT entering the kernel 496 496

Context switch 190 190

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 37

Table 7-11 Latency Measurements (Large Data / Large Code)

Description Minimal Features Full Features

Semaphore posting no task switch 970 (970) 1336 (1336)

Semaphore waiting no blocking 968 (968) 1408 (1408)

Semaphore posting with task switch 2338 (2770) 3428 (3732)

Semaphore waiting with blocking 3628 (3582) 3846 (3708)

Semaphore posting in ISR with task switch 4480 (4880) 5628 (5904)

Event setting no task switch n/a 1354 (1354)

Event getting no blocking n/a 1748 (1748)

Event setting with task switch n/a 3686 (3990)

Event getting with blocking n/a 4072 (3934)

Event setting in ISR with task switch n/a 5582 (5858)

Mailbox writing no task switch n/a 1720 (1720)

Mailbox reading no blocking n/a 1946 (1946)

Mailbox writing with task switch n/a 4340 (4644)

Mailbox reading with blocking n/a 4538 (4400)

Mailbox writing in ISR with task switch n/a 6160 (6382)

Interrupt dispatcher latency 246 246

Interrupt overhead entering the kernel 2142 (2110) 2200 (2172)

Interrupt overhead NOT entering the kernel 484 484

Context switch 382 382

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 38

Table 7-12 Latency Measurements (XTiny Data / Huge Code)

Description Minimal Features Full Features

Semaphore posting no task switch 584 (584) 874 (868)

Semaphore waiting no blocking 606 (606) 952 (946)

Semaphore posting with task switch 948 (1110) 1636 (1766)

Semaphore waiting with blocking 1704 (1672) 1862 (1818)

Semaphore posting in ISR with task switch 2302 (2452) 3018 (3140)

Event setting no task switch n/a 878 (872)

Event getting no blocking n/a 1136 (1130)

Event setting with task switch n/a 1810 (1936)

Event getting with blocking n/a 1996 (1952)

Event setting in ISR with task switch n/a 2862 (2976)

Mailbox writing no task switch n/a 1110 (1104)

Mailbox reading no blocking n/a 1278 (1272)

Mailbox writing with task switch n/a 2050 (2180)

Mailbox reading with blocking n/a 2150 (2106)

Mailbox writing in ISR with task switch n/a 3070 (3188)

Interrupt dispatcher latency 262 262

Interrupt overhead entering the kernel 1354 (1342) 1382 (1374)

Interrupt overhead NOT entering the kernel 498 498

Context switch 122 122

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 39

Table 7-13 Latency Measurements (XSmall Data / Huge Code)

Description Minimal Features Full Features

Semaphore posting no task switch 672 (672) 1008 (1002)

Semaphore waiting no blocking 678 (678) 1072 (1066)

Semaphore posting with task switch 1254 (1530) 2152 (2348)

Semaphore waiting with blocking 2160 (2110) 2384 (2326)

Semaphore posting in ISR with task switch 2740 (3000) 3690 (3868)

Event setting no task switch n/a 1018 (1012)

Event getting no blocking n/a 1302 (1296)

Event setting with task switch n/a 2356 (2548)

Event getting with blocking n/a 2546 (2488)

Event setting in ISR with task switch n/a 3562 (3736)

Mailbox writing no task switch n/a 1366 (1356)

Mailbox reading no blocking n/a 1578 (1568)

Mailbox writing with task switch n/a 2742 (2934)

Mailbox reading with blocking n/a 2780 (2722)

Mailbox writing in ISR with task switch n/a 3908 (4078)

Interrupt dispatcher latency 290 290

Interrupt overhead entering the kernel 1486 (1470) 1538 (1520)

Interrupt overhead NOT entering the kernel 534 534

Context switch 198 198

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 40

Table 7-14 Latency Measurements (Large Data / Huge Code)

Description Minimal Features Full Features

Semaphore posting no task switch 978 (978) 1328 (1328)

Semaphore waiting no blocking 978 (978) 1408 (1408)

Semaphore posting with task switch 2442 (2874) 3512 (3820)

Semaphore waiting with blocking 3736 (3690) 3948 (3824)

Semaphore posting in ISR with task switch 4788 (5136) 5872 (6152)

Event setting no task switch n/a 1352 (1352)

Event getting no blocking n/a 1750 (1750)

Event setting with task switch n/a 3778 (4086)

Event getting with blocking n/a 4174 (4050)

Event setting in ISR with task switch n/a 5758 (6038)

Mailbox writing no task switch n/a 1726 (1726)

Mailbox reading no blocking n/a 1964 (1964)

Mailbox writing with task switch n/a 4480 (4788)

Mailbox reading with blocking n/a 4694 (4570)

Mailbox writing in ISR with task switch n/a 6342 (6622)

Interrupt dispatcher latency 278 278

Interrupt overhead entering the kernel 2346 (2262) 2360 (2332)

Interrupt overhead NOT entering the kernel 514 514

Context switch 448 448

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 41

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 42

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 43

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 44

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 45

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 46

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 47

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 48

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – 80251 – Keil Compiler 2012-11-11

Rev 1.3 Page 49

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MIN_STACK_USE 1

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, Adam&Eve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

