
Copyright Information

This document is copyright Code Time Technologies Inc. ©2011. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

8051/8052 – Keil Compiler

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Keil Software, the Keil Software Logo and Vison are registered trademarks of Keil Elektronik GmbH / Keil Software Inc. All other
trademarks are the property of their respective owners.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6

2 TARGET SET-UP .. 7

2.1 STARTUP.A51 MODIFICATIONS .. 9

3 INTERRUPTS ...10

3.1 INTERRUPT INSTALLER ...11
3.2 REGULAR INTERRUPTS ...11
3.3 FAST INTERRUPTS ...12
3.4 NESTED INTERRUPTS ..12

4 SEARCH SET-UP ...13

5 CHIP SUPPORT ...15

5.1 TIMERS / COUNTERS ...15
5.1.1 TimerInit() ...16
5.1.2 TIM8051_RLD() ..18

5.2 SERIAL PORT ..19
5.2.1 SerialInit() ...20

6 MEASUREMENTS ...22

6.1 MEMORY ..22
6.2 LATENCY ..26

7 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...29

7.1 CASE 0: MINIMUM BUILD ...29
7.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..30
7.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...31
7.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND32
7.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..33
7.6 CASE 5: + EVENTS / MAILBOXES ..34
7.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...35

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 4

List of Figures
FIGURE 2-1 LARGE MODEL SET-UP ... 7
FIGURE 2-2 LINKER OVERLAY DISABLING .. 8
FIGURE 6-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...22
FIGURE 6-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...26

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 STARTUP.A51 SET-UP #1 .. 9
TABLE 2-2 STARTUP.A51 ORIGINAL LINES ... 9
TABLE 2-3 STARTUP.A51 MODIFIED LINES ... 9
TABLE 3-1 PRE-ISR DISPATCHER CODE ..10
TABLE 3-2 DISTRIBUTION INTERRUPTS ..11
TABLE 3-3 INVALIDATING AN ISR HANDLER ..11
TABLE 3-4 ENABLING FAST INTERRUPTS ...12
TABLE 3-5 DISABLING FAST INTERRUPTS ..12
TABLE 4-1 SEARCH ALGORITHM CYCLE COUNT ..13
TABLE 5-1 TIMER #0 USED BY THE RTOS ..15
TABLE 5-2 TIMER #1 USED BY THE RTOS ..15
TABLE 5-3 TIMER #2 USED BY THE RTOS ..15
TABLE 5-4 SERIAL PORT SET-UP EXAMPLE ...19
TABLE 6-1 “C” CODE MEMORY USAGE ...23
TABLE 6-2 ASSEMBLY CODE MEMORY USAGE ...23
TABLE 6-3 DATA MEMORY USAGE ..24
TABLE 6-4 TASK DESCRIPTOR MEMORY USAGE ..25
TABLE 6-5 SEMAPHORE / MUTEX DESCRIPTOR MEMORY USAGE ..25
TABLE 6-6 MAILBOX DESCRIPTOR MEMORY USAGE ...25
TABLE 6-7 MEASUREMENT WITHOUT TASK SWITCH ..26
TABLE 6-8 MEASUREMENT WITH TASK SWITCH ..27
TABLE 6-9 MEASUREMENT WITHOUT TASK SWITCH ..27
TABLE 6-10 LATENCY MEASUREMENTS...28
TABLE 7-1: CASE 0 BUILD OPTIONS ..29
TABLE 7-2: CASE 1 BUILD OPTIONS ..30
TABLE 7-3: CASE 2 BUILD OPTIONS ..31
TABLE 7-4: CASE 3 BUILD OPTIONS ..32
TABLE 7-5: CASE 4 BUILD OPTIONS ..33
TABLE 7-6: CASE 5 BUILD OPTIONS ..34
TABLE 7-7: CASE 6 BUILD OPTIONS ..35

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 6

1 Introduction

This document details the port of the Abassi RTOS on the 8051/8052 family of microcontrollers. The

software suite used for this specific port is the Keil C51 compiler, assembler, linker, and simulator suite,

better known as Vision V4.10.

The 8051/8052 family of microcontrollers possesses a CPU architecture that is not very friendly to code

generated by compilers; it is the same for applications using multitasking. It has a small internal stack, the

external memory accesses are inefficient and the CPU register count is minimal. One should not be

surprised to notice the RTOS code size is quite large compared to other processors and the task switching

time is in the thousand of cycles instead of the hundreds.

Because the stack size is not large enough for multitasking, the large model is the only target model

supported by the RTOS. In this model of the Keil compiler, the processor stack is only used to hold the

return addresses for function calls; the function arguments and local variables are all located on an external

stack. For the RTOS, each task possesses its own external stack and to mitigate internal stack overflows,

the internal stack contents is copied back and forth to the external stack upon task switching. Also, the

interrupt context save temporarily uses a small portion of the internal stack, but the whole interrupt context

save lands on the external stack before the interrupt handler is called.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_8051_Keil.a51 RTOS assembly file for the 8051/8052 with Keil compiler

sio8051.h Include file for the serial port driver

sio8051.c Source file for the serial port driver

tim8051.h Include file for the timer driver

tim8051.c Source file for the timer driver

1.2 Limitations

There are a few limitations when using the RTOS built with the Keil compiler suite for the 8051/8052.

The Idle Task must be created: this is controlled with the build option OS_IDLE_TASK, which cannot be set

to 0. Error trapping was added to detect if that condition is not fulfilled for this port.

The way the individual task stack frame for the C51 was constructed, main() must have some information

about the external stack, which sadly the compiler does not make available: the lower memory location of

the external stack is needed, but not available. To overcome this limitation, the build option

OS_AE_STACK_SIZE is used to define how much free space on the external stack is available. This option

is not part of the standard RTOS build options; instead it is only declared inside the file Abassi.h. As

supplied, the RTOS code sets this value in Abassi.h to 512 bytes; modify the value of this token

according to your application (make sure the definition that is modified is enclosed between both #ifdef

__KEIL__ and #ifdef __C51__ declarations).

The static descriptors macros (SEM_STATIC(), MTX_STATIC(), TSK_STATIC() and MBX_STATIC())

are not available for this port.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 7

2 Target Set-up

Very little is needed to set-up the Keil build environment to use the RTOS in an application. The first thing

to do is to set the build to generate code for the large model. In the “Options for Target” select the “Target”

tab and set the memory model to “Large variables in XDATA”. A snapshot of the window is shown in

Figure 2-1 below:

Figure 2-1 Large Model set-up

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 8

The second set-up is to disable the data overlay feature of the linker. If the data overlay is not disabled for

the RTOS, the linker will reuse part of the data space and as the linker is not aware of the multiple tasks in

the application, there are run-time conflicts where one task may reuse the data space of another one. In the

“Options for Target” select the “BL51 Misc” tab and add “NOOL” in the “Misc Control” window. ”. A

snapshot of the window is shown in Figure 2-2 below:

Figure 2-2 Linker Overlay disabling

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 9

2.1 STARTUP.A51 Modifications

Keil uses a standard start code that is supplied in the file STARTUP.A51. The first thing to change in this

file is to set-up the large model environment:

Table 2-1 STARTUP.A51 set-up #1

XBPSTACK EQU 1 ; set to 1 if large reentrant is used.

The second change is to add a declaration to allow the RTOS to know where the base of the internal stack

is located. You will find the following declaration in STARTUP.A51:

Table 2-2 STARTUP.A51 original lines

?STACK SEGMENT IDATA

 RSEG ?STACK

 DS 1

Add these two lines as indicated:

Table 2-3 STARTUP.A51 modified lines

?STACK SEGMENT IDATA

 RSEG ?STACK

 PUBLIC START?STACK

START?STACK:

 DS 1

And that’s it.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 10

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed within or outside an interrupt

context. Normally an interrupt function is specified by adding the postfix “interrupt K using N”. But

for all interrupts, the Abassi RTOS provides an interrupt dispatcher which allows it to be interrupt aware.

This dispatcher achieves two goals. First, the kernel uses it to be aware if a request occurs within an

interrupt context or not. Second, using this dispatcher reduces the code size as all interrupts share the same

code for the context save and restore needed for an interrupt.

Out of the box there are provisions for 7 sources of interrupts, as specified by the build option

OS_N_INTERRUPTS defined in the file Abassi.h
1
. This build option is not part of the generic RTOS build

options as it is processor specific, therefore its value is set according to the specific compiler and processor

port. The basic 8051 compatible device has 5 sources of interrupts and the 8052 has 6. 1 extra source has

been provided as an example when more interrupts need to be handled. This is provided because today’s

8051 comes in so many variants and most of the modern ones add one or more extra interrupts sources over

the legacy device.

The dispatcher always uses the same piece of code, replicated for each interrupt vector entry. The

following snippet of code extracted from the file Abassi_8051_Keil.a51, around line 75, shows the

code for the extra interrupt:

Table 3-1 Pre-ISR dispatcher code

 CSEG AT 0x0033

 push b

 mov b, #(0x06*TBL_SCALE)

 ljmp ISRdispatch

The first statement, CSEG AT 0x0033, informs the linker to locate the code at the physical address

0x0033. If the new interrupt to add uses a different vector, simply replace 0x0033 with the appropriate

address. The second statement is the 8051 op-code to preserve the B register. After that, the B register is

loaded with the value that corresponds to the interrupt number used by the interrupt installer

(ISRinstall()). In the above example the interrupt number is 0x06. Finally, the dispatcher is entered

through the ljmp statement.

If more than one extra interrupt needs to be added, then all there is to do is to follows these steps:

1. Set OS_N_INTERRUPTS to the correct value;

2. Duplicate the pre-ISR dispatch code as many times as needed;

3. For each duplicated code, set the correct address in the CSEG statement;

4. For each duplicated code, assign a unique interrupt number (<OS_N_INTERRUPTS).

Remember that interrupt numbers start with an index of zero, so that setting OS_N_INTERRUPTS to a given

value allows for interrupt numbers in the range 0…(OS_N_INTERRUPTS-1).

1
 When modifying the build option OS_N_INTERRUPTS for this port, make sure the modified value is

enclosed between both #ifdef __KEIL__ and #ifdef __C51__.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 11

Table 3-2 Distribution Interrupts

Interrupt Number Interrupt Vector Address Description

0 0x0003 External 0

1 0x000B Timer 0

2 0x0013 External 1

3 0x001B Timer 1

4 0x0023 Serial Port

5 0x002B Timer 2 (8052)

6 0x0033 Extra 0

3.1 Interrupt Installer

Attaching a function to an interrupt is quite straight forward. All there is to do is use the component

ISRinstall() to specify the interrupt number and the function to be attached to that interrupt number:

#include “Abassi.h”

 …

 ISRinstall(Number, &ISRfct);

 Set-up the interrupt

The function to attach to the interrupt, ISRfct() here, is and must always be a regular function.

NOTE: It is a regular function, not one declared with the Keil specific “interrupt K using N” postfix

statement. But as a function operating within an interrupt context, it must be re-entrant, therefore

the function must be declared with the “reentrant” postfix.

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function named OSinvalidISR(). If an interrupt function is attached to an interrupt

vector using the ISRinstall() component before calling OSstart(), this attachment will be removed

by OSstart(), so ISRintall() should never be used before OSstart() has ran. When an interrupt

handler is removed, it is very important and necessary to first disable the interrupt source, then the handling

function should be set back to OSinvalidISR(). This is shown in the next table:

Table 3-3 Invalidating an ISR handler

#include “Abassi.h”

 …

 ISRinstall(Number, &OSinvalidISR);

 …

A better example with a real interrupt initialization function is shown in Section 5.1.

3.2 Regular Interrupts

The regular interrupts have been implemented to minimize the impact on the internal stack (which stands at

96 bytes or less). When an interrupt is handled by the dispatcher, the whole internal stack contents in use is

transferred to the current task’s stack. That frees up the internal stack such that a high level of function

nesting is possible in an interrupt.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 12

3.3 Fast Interrupts

Fast interrupts are interrupts that never use components of the RTOS. As they don’t use any kernel

resources, it is possible to reduce the overhead of the dispatcher and these interrupts are assumed to be

small, therefore it was decided to not transfer the contents of the internal stack to the current task’s stack, as

it is done with regular interrupts. To enable fast interrupts
2
, set the following statement in the file

Abassi_8051_Keil.a51, located around line 30:

Table 3-4 Enabling Fast Interrupts

FAST_INTS EQU 1

If fast interrupts are not required then set the following statement instead:

Table 3-5 Disabling Fast Interrupts

FAST_INTS EQU 0

Fast interrupts are only supported for the original 6 sources of interrupts. When fast interrupts are enabled,

any interrupt in the original 6 which is set to a priority of 1 is a fast interrupt. Any additional interrupts

(above the original 6), or one of the original interrupts at priority 0 are regular interrupts, are allowed to use

RTOS components.

NOTE: Using a RTOS component in a fast interrupt is almost guaranteed to crash the application. Again,

never use a RTOS component inside a fast interrupt.

To enable fast interrupts for interrupts above the original 6, please contact us.

3.4 Nested Interrupts

When fast interrupts are enable, interrupt nesting occurs (priority 1 interrupts can interrupt a priority 0

interrupt). But as this nesting does not involve preempting any of the kernel components, the build option

OS_NESTED_INTS can be set to 0; that is if no extra (compared to the original 6) interrupts is set to a

priority of 1. If one or more extra interrupt sources is set to a priority of 1, and any of these interrupts use

one or more RTOS components, then component preemption can happen. Setting OS_NESTING_INTS to

non-zero when the fast interrupts are enabled will not create any problems; the side effect is a very small

extra cycle of CPU needed when using some RTOS components in a regular interrupt.

Considering the above description, the RTOS build option OS_NESTED_INTS is always overloaded and

forced to non-zero when the RTOS is built for this port. If you are sure that RTOS component preemption

in interrupts will never happen, all there is to do is to set it to zero by modifying the statement #define

OS_NESTED_INTS 1 in the section for the KEIL complier and the 8051 target processor in the file

Abassi.h, as indicated in Footnote 1.

2
 The distribution code has fast interrupts disabled by default.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 13

4 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers three different algorithms to quickly determine

the next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The second

column is when OS_SEARCH_FAST is set to zero, meaning simple array traversing. The third column,

named Look-up, is when OS_SEARCH_FAST is set to 1, which uses an 8 bit look-up table. Finally, the last

column is when OS_SEARCH_FAST is set to 4 (Keil compiler int are 16 bits, so 2^4), meaning a 16 bit

look-up table further searched through successive approximation.

Table 4-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 2826 3149 3968

2 2937 3260 3975

3 3048 3371 4080

4 3159 3482 3989

5 3270 3593 4094

6 3381 3704 4101

7 3492 3815 4206

8 3603 3116 4017

9 3714 3227 4122

10 3825 3338 4129

11 3936 3449 4234

12 4047 3560 4143

13 4158 3671 4248

14 4269 3782 4255

15 4380 3893 4360

16 4491 3194 3953

17 4602 3305 4058

18 4713 3416 4065

19 4824 3527 4170

20 4935 3638 4079

21 5046 3749 4184

22 5157 3860 4191

23 5268 3971 4296

24 5379 3272 4107

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 14

The third option, when OS_SEARCH_FAST is set to 4, never achieves a lower CPU usage than when

OS_SEARCH_FAST is set to zero or 1. This is understandable as the 8051 does not possess a barrel shifter

for variable shift. When OS_SEARCH_FAST is set to zero each extra priority level to traverse requires

exactly 111 CPU cycle. When OS_SEARCH_FAST is set to 1 each extra priority level to traverse also

requires exactly 111 CPU cycle except when the priority level is an exact multiple of 8; then there is a

sharp reduction of CPU usage. Overall, setting OS_SEARCH_FAST to 1 adds an extra 323 cycles of CPU

for the search compared to setting OS_SEARCH_FAST to zero. But when the next ready to run priority is

less than 8, 16, 24, … then there is an extra 78 cycles needed but without the 8 times 111 cycles

accumulation.

What does this mean? Using 20 or 30 task on the 8051 may be an exception due to the limited code and

data memory space, so one could assume the number of tasks will remain small. If that is the case, then

OS_SEARCH_FAST should be set to 0. If an application is created with 20 or 30 tasks, then setting

OS_SEARCH_FAST to 1 may be better choice.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 15

5 Chip Support

There are a multitude of variants for the MCS-51, so the chip support that is offered with the Abassi RTOS

is limited to the peripherals of the original 8051/8052; that is 2 (8051) or 3 (8052) timers and a single serial

port. This is not a full Board Support Package (BSP); it is only a few functions that have been used to port

the RTOS on the 8051/8052 and they are made available.

5.1 Timers / Counters

The timer driver offers a simple way to program each of the basic timers available in the 8051/8052

microcontroller to generate a periodic interrupt. Special care was taken to compensate the value reloaded

in the timer to take into account the time elapsed between the triggering of the interrupt and the set-up for

timer 0 and 1. Timer 2 has its own automatic reload capabilities.

For the timer used by the RTOS when either build option OS_TIMEOUT or OS_ROUND_ROBIN are non-zero,

the timer can be set-up with the “C” expression in Table 5-1 and Table 5-2 below. The period (second

argument) must be the token OS_TIMER_US remapped with the macro TIM8051_RLD() as this token is

what the RTOS was configured with when built, and the callback function (third argument) must be

TimTick(), which is the RTOS timer internal maintenance function.

This example installs the interrupt vector and programs timer #0 as the RTOS timer:

Table 5-1 Timer #0 used by the RTOS

 ISRinstall(1, &HWItim8051_0);

 TimerInit(0, TIM8051_RLD(OS_TIMER_US), 1, &TimTick, 0);

Or if timer #1 is preferred:

Table 5-2 Timer #1 used by the RTOS

 ISRinstall(3, &HWItim8051_1);

 TimerInit(1, TIM8051_RLD(OS_TIMER_US), 1, &TimTick, 0);

Or if timer #2, when on a 8052 compatible device, is preferred:

Table 5-3 Timer #2 used by the RTOS

 ISRinstall(5, &HWItim8051_2);

 TimerInit(2, TIM8051_RLD(OS_TIMER_US), 1, &TimTick, 0);

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 16

5.1.1 TimerInit()

Synopsis

#include “tim8051.h”

void TimerInit(int TimNmb, int Period, int Prio, void(*Callback)(void),

 int OneShot);

Description

TimerInit() is a utility that programs a timer of a 8051/8052 compatible device to generate

either a periodic interrupt or a one time interrupt. The function allows the attachment of a function

to call when the interrupt occurs.

Availability

Keil 8051/8052 port only.

Arguments

TimNmb Timer to program.

Value must be 0 or 1 for 8051 compatible devices, and 0, 1, or 2 for 8052

compatible devices.

Period Desired period (when OneShot == 0) or desired elapsed time (when OneShot

!= 0).

Specified in timer ticks count.

Prio Interrupt priority.

Value must be 0 or 1.

CallBack Function to call when the timer interrupt occurs.

NULL indicates to not call a function after the interrupt.

OneShot When zero, program the timer to generate a single interrupt upon completion.

When non-zero, program the timer to generate a periodic interrupt.

Returns

void

Component type

Function

Options

Notes

When a timer is used for the serial port, do not program it with TimerInit(); SerialInit()

takes care of initializing the timer it uses.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 17

See also

TIM8051_RLD() (Section 5.1.2)

SerialInit() (Section 5.2.1)

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 18

5.1.2 TIM8051_RLD()

Synopsis

#include “tim8051.h”

int TIM8051_RLD(long TimeUS);

Description

TIM8051_RLD() is a utility that converts a time from microseconds into a number of timer ticks.

Availability

Keil 8051/8052 port only.

Arguments

TimeUS Time to convert into number of timer ticks.

Specified in s units.

Returns

int Number of timer ticks.

Component type

Macro definition

Options

Notes

The processor clock must be specified with the token OS_CPU_FREQ; the value indicates the

processor clock in Hz. This token is defined in Abassi.h but can be deleted and added on the

compiler command line instead.

See also

TimerInit() (Section 5.1.1)

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 19

5.2 Serial Port

As with the timers, the serial port driver provides a simple way to program the serial port. Using the driver

allows using the serial port in polling mode or in interrupt mode. When the interrupt mode is selected, an

internal circular buffer holds the characters to transmit and the newly received characters. The user does

not need to add or set-up anything, except installing the interrupt function handler. The programming of

the serial port is always set to 8 data bit, 1 stop bit and no parity.

This example installs the interrupt vector, set the interrupt to priority 0, programs the serial port to use

timer 1, sets the baud rate to 19200 bps, and selects interrupt mode.

Table 5-4 Serial Port set-up example

 ISRinstall(4, &HWIsio8051);

 SioInit(19200, 1, 1, 0);

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 20

5.2.1 SerialInit()

Synopsis

#include “sio8051.h”

void SerialInit(int BaudRate, int UseISR, int TimNmb, int Prio);

Description

SerialInit() is a utility that programs the serial port (UART) of the 8051/8052.

Availability

Keil 8051/8052 port only.

Arguments

BaudRate Baud rate to set the serial port to.

UseISR Boolean indicating if the serial port operates in polling mode or interrupt mode.

Zero is polling; non-zero is ISR.

TimNmb Timer to use for the serial port.

Value must be 0 or 1 for the 8051, and 0, 1, or 2 for the 8052.

Prio Interrupt priority.

Value must be 0 or 1.

Returns

void

Component type

Function

Options

Including the file sio8051.c in the build makes the standard getchar(), putchar() and not so

standard GetKey() functions available.

Notes

The processor clock must be specified with the token OS_CPU_FREQ; the value indicates the

processor clock in Hz. This token is defined in Abassi.h but can be deleted and added on the

compiler command line instead.

Baud rate choices are limited to those that satisfy (OS_CPU_FREQ/(192*BaudRate)) such that it

yields an integer value (or very close).

When a timer is used for the serial port, it should never be programmed with TimerInit().

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 21

When the serial port operates in interrupt mode, an internal circular buffer is used. If the token

OS_SIO_BUF_SIZE is not defined, a buffer of 16 entries is used. If OS_SIO_BUF_SIZE is

defined, it must be a power of 2 value.

See also

TimerInit() (Section 5.1.1)

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 22

6 Measurements

This section gives an overview of the memory usage and latency when the RTOS is used on the 8051/8052.

The CPU cycles are not the clock cycles; on the original Intel 8051/8052, they are full instruction cycles

that require 12 transitions of the processor clock each. On many variants of the 8051/8052 less than 12

transitions are needed for a CPU cycle.

6.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 50 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

The memory required by the RTOS code includes the “C” code and assembly language code used by the

RTOS. The code optimization settings of the compiler that were used for the memory measurement are:

1. Level: 8 (Reuse Common Entry Code)

2. Emphasis: Favor size

Figure 6-1 Memory Measurement Code Optimization Settings

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 23

Table 6-1 “C” Code Memory Usage

Description Code Size

Minimal Build N/A

+ Runtime service creation / static memory < 3250 bytes

+ Multiple tasks at same priority < 4000 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 6050 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 8100 bytes

+ Events

+ Mailbox

< 11000 bytes

Full Feature Build (no names) < 12350 bytes

Table 6-2 Assembly Code Memory Usage

Description Code Size

Build without Fast interrupts 553 bytes

Build with Fast interrupts 647 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 24

The following table enumerates the data memory required by the RTOS itself, according to the build

options:

Table 6-3 Data Memory Usage

Description Data Size

Always 23 + (OS_MAX_PEND_POST * 9)

+ (OS_PRIO_MIN * 3) bytes

OS_LOGGING_TYPE != 0 + 2 + (OS_MAX_PEND_POST * 2) bytes

OS_NAMED_MBX != 0 + 3 + “Semaphore Size” bytes

OS_NAMED_SEM != 0 + 3 + “Semaphore Size” bytes

OS_NAMED_TASK != 0 + 12 + “Semaphore Size” bytes

OS_NAMED_SEM || OS_NAMED_MBX ||

OS_NAMED_TASK

+ 4 bytes

OS_ROUND_ROBIN != 0 + 2 bytes

OS_TIMEOUT !+ 0 + 5 bytes

OS_TIMR_US != 0 + 2 bytes

OS_N_INTERRUPTS != 0 + (OS_N_INTERRUPTS * 3) bytes

OS_STARVE_WAIT_MAX != 0 + 7 bytes

OS_ALLOC_SIZE != 0 + 2 + OS_ALLOC_SIZE bytes

OS_STATIC_MBX && OS_RUNTIME_MBX + 4 + (“Mailbox Size” *

OS_STATIC_MBX)

((OS_STATIC_MBX+OS_STATIC_BUF_MAX) *

3) bytes

OS_STATIC_SEM && OS_RUNTIME_SEM + 2 + (“Semaphore Size” *

OS_STATIC_SEM) bytes

OS_STATIC_TASK != 0 + 2 + (“Task Size” * (OS_STATIC_TASK

+ 1 + (OS_IDLE_STACK != 0) +

OS_AE_STACK_SIZE)) bytes

OS_STATIC_NAME != 0 + 2 + OS_STATIC_NAME bytes

OS_STATIC_STACK != 0 + 5 + OS_IDLE_STACK bytes

OS_SEARCH_FAST == 1 + (OS_PRIO_MIN+7)>>3 bytes

OS_SEARCH_FAST == 4 + (OS_PRIO_MIN+15)>>4 bytes

OS_IDLE_STACK && !OS_RUNTIME_TASK + 3 + “Task Size” + OS_IDLE_STACK

bytes

OS_TIMER_CB != 0 + 2 bytes

OS_LOGGING_TYPE == 1 + many strings

The data memory usage by the services offered by the RTOS has been broken down by descriptor. The

first entry in the table is the memory required by the descriptor when none of the optional features of the

RTOS are included in the build. Then each entry, until the last one, indicates the number of bytes to add to

the descriptor when a feature is included in the build. Finally, the last entry gives the maximum size of the

descriptor, when all features are enabled, excluding the data required for the descriptor naming.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 25

Table 6-4 Task Descriptor Memory Usage

Description Data Size

Always 14 bytes + “Semaphore Size”

OS_TASK_SUSPEND != 0 + 4 bytes

OS_SAME_PRIO != 0 + 3 bytes

OS_TIMEOUT != 0 + 10 bytes

OS_ROUND_ROBIN != 0 + 2 bytes

OS_ROUND_ROBIN < 0 + 2 bytes

OS_NAMED_TASK != 0 + 6 bytes

OS_MTX_INVERSION != 0 + 2 bytes

OS_TSK_SYSPEND || OS_MTX_DEADLOCK ||

OS_MTX_INVERSION

+ 3 bytes

OS_USE_TASK_ARG != 0 + 3 bytes

OS_EVENT != 0 + 8 bytes

OS_MAILBOX != 0 + 10 bytes

OS_STARVE_WAIT_MAX != 0 + 18 bytes

OS_STARVE_WAIT_MAX < 0 + 2 bytes

OS_STARVE_RUN_MAX < 0 + 2 bytes

OS_STARVE_PRIO < 0 + 2 bytes

Largest size / no naming 100 bytes

Table 6-5 Semaphore / Mutex Descriptor Memory Usage

Description Data Size

Always 5 bytes

OS_IS_FCFS != 0 + 2 bytes

OS_TSK_SYSPEND || OS_MTX_DEADLOCK ||

OS_MTX_INVERSION

+ 6 bytes

OS_MTX_INVERSION < 0 + 2 bytes

OS_NAMED_SEMA != 0 + 6 bytes

Largest size / no naming 15 bytes

Table 6-6 Mailbox Descriptor Memory Usage

Description Data Size

Always (12 + (1 + BufferSize) * 4)

+ “Semaphore Size” bytes

OS_NAMED_MBX != 0 + 6 bytes

Largest size / no naming (27 + ((1 + BufferSize) * 4))

bytes

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 26

6.2 Latency

Latency of operations have been measured on a legacy 8052 40 pin DIP based platform using a gated

frequency/counter test gear, and confirmed with the Keil simulator. The code optimization settings of the

compiler that were used for the latency measurements are:

1. Level: 8 (Reuse Common Entry Code)

2. Emphasis: Favor speed

Figure 6-2 Latency Measurement Code Optimization Settings

There are 4 types of latency that are measured, and these 4 measurements are expected to give a good

overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three tasks

were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The 4 measurements are performed on a semaphore, the event flags of a task and finally a mailbox. The

first 2 latency measurements use the component in a manner where it could unblock a higher priority task

blocked on the service. In one case, no task is blocked, in the other a higher priority task is blocked on it.

The third measurement involves the opposite, which is a task grabbing the service without getting blocked.

Finally, the reaction to unblocking a task through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. This means:

Table 6-7 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 27

The second set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking until the task that was blocked is back from the component used that

blocked the task. This means:

Table 6-8 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

The third measurements counts the number of CPU cycles elapsed starting right before the component is

used until it is back from the component. This means:

Table 6-9 Measurement without Task Switch

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The fourth set of measurements counts the number of CPU cycles elapsed starting right at the beginning of

the interrupt until the task that was blocked is back from the component used that blocked the task. It is the

same as the second set of measurement, except the CPU cycle counting is started at the beginning of the

interrupt code, in the processor interrupt vector table. The interrupt handler, attached with ISRinstall(),

is simply a two line function that uses the appropriate RTOS component with a return.

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 28

The following table lists the results obtained, where the cycle count is 1/12 of the CPU clock, as a single

CPU cycle requires 12 clock transitions on the legacy 8052 microcontroller.

The interrupt overhead is the measurement of the number of CPU cycles used between the entry point in

the interrupt vector and the return from interrupt, with a “do nothing” function in the ISRinstall(). The

interrupt trigger was timer #1.

Table 6-10 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 1262 1895

Semaphore posting with task switch 2308 3764

Semaphore waiting no blocking 1258 1898

Semaphore posting in ISR with task switch 3210 4681

Event setting no task switch n/a 1955

Event setting with task switch n/a 4121

Event getting no blocking n/a 2296

Event setting in ISR with task switch n/a 5038

Mailbox writing no task switch n/a 2576

Mailbox writing with task switch n/a 5478

Mailbox reading no blocking n/a 2846

Mailbox writing in ISR with task switch n/a 6430

Interrupt overhead (Build with no Fast Interrupts) 223 223

Interrupt overhead (Build with Fast Interrupts) 256 256

Fast Interrupt overhead 92 92

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 29

7 Appendix A: Build Options for Code Size

7.1 Case 0: Minimum build

Table 7-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_IDLE_STACK 0 /* If IsleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_POST 32 /* Maximum number of sempahores posted in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMED_MBX 0 /* Use named Mailboxes */

#define OS_NAMED_SEM 0 /* Use named Semaphores */

#define OS_NAMED_TASK 0 /* Use named Tasks */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME_MBX 0 /* If can create mailboxes at run time */

#define OS_RUNTIME_SEM 0 /* If can create semaphores at run time */

#define OS_RUNTIME_TASK 0 /* If can create tasks at run time */

#define OS_SEARCH_FAST 0 /* If using a fast search */

#define OS_SEMA_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 30

7.2 Case 1: + Runtime service creation / static memory

Table 7-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_IDLE_STACK 0 /* If IsleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_POST 32 /* Maximum number of sempahores posted in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMED_MBX 0 /* Use named Mailboxes */

#define OS_NAMED_SEM 0 /* Use named Semaphores */

#define OS_NAMED_TASK 0 /* Use named Tasks */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME_MBX 0 /* If can create mailboxes at run time */

#define OS_RUNTIME_SEM 1 /* If can create semaphores at run time */

#define OS_RUNTIME_TASK 1 /* If can create tasks at run time */

#define OS_SEARCH_FAST 0 /* If using a fast search */

#define OS_SEMA_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 4096 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 31

7.3 Case 2: + Multiple tasks at same priority

Table 7-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_IDLE_STACK 0 /* If IsleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_POST 32 /* Maximum number of sempahores posted in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMED_MBX 0 /* Use named Mailboxes */

#define OS_NAMED_SEM 0 /* Use named Semaphores */

#define OS_NAMED_TASK 0 /* Use named Tasks */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME_MBX 0 /* If can create mailboxes at run time */

#define OS_RUNTIME_SEM 1 /* If can create semaphores at run time */

#define OS_RUNTIME_TASK 1 /* If can create tasks at run time */

#define OS_SEARCH_FAST 0 /* If using a fast search */

#define OS_SEMA_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 4096 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 32

7.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 7-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_IDLE_STACK 0 /* If IsleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_POST 32 /* Maximum number of sempahores posted in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMED_MBX 0 /* Use named Mailboxes */

#define OS_NAMED_SEM 0 /* Use named Semaphores */

#define OS_NAMED_TASK 0 /* Use named Tasks */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME_MBX 0 /* If can create mailboxes at run time */

#define OS_RUNTIME_SEM 1 /* If can create semaphores at run time */

#define OS_RUNTIME_TASK 1 /* If can create tasks at run time */

#define OS_SEARCH_FAST 0 /* If using a fast search */

#define OS_SEMA_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 4096 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 33

7.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 7-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_IDLE_STACK 0 /* If IsleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_POST 32 /* Maximum number of sempahores posted in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMED_MBX 0 /* Use named Mailboxes */

#define OS_NAMED_SEM 0 /* Use named Semaphores */

#define OS_NAMED_TASK 0 /* Use named Tasks */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME_MBX 0 /* If can create mailboxes at run time */

#define OS_RUNTIME_SEM 1 /* If can create semaphores at run time */

#define OS_RUNTIME_TASK 1 /* If can create tasks at run time */

#define OS_SEARCH_FAST 0 /* If using a fast search */

#define OS_SEMA_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 4096 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 34

7.6 Case 5: + Events / Mailboxes

Table 7-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_IDLE_STACK 0 /* If IsleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_POST 32 /* Maximum number of sempahores posted in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMED_MBX 0 /* Use named Mailboxes */

#define OS_NAMED_SEM 0 /* Use named Semaphores */

#define OS_NAMED_TASK 0 /* Use named Tasks */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME_MBX 1 /* If can create mailboxes at run time */

#define OS_RUNTIME_SEM 1 /* If can create semaphores at run time */

#define OS_RUNTIME_TASK 1 /* If can create tasks at run time */

#define OS_SEARCH_FAST 0 /* If using a fast search */

#define OS_SEMA_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 4096 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – 8051/8052 – Keil Compiler 2011-12-16

Rev 1.6 Page 35

7.7 Case 6: Full feature Build (no names)

Table 7-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_IDLE_STACK 0 /* If IsleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_POST 32 /* Maximum number of sempahores posted in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMED_MBX 0 /* Use named Mailboxes */

#define OS_NAMED_SEM 0 /* Use named Semaphores */

#define OS_NAMED_TASK 0 /* Use named Tasks */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME_MBX 1 /* If can create mailboxes at run time */

#define OS_RUNTIME_SEM 1 /* If can create semaphores at run time */

#define OS_RUNTIME_TASK 1 /* If can create tasks at run time */

#define OS_SEARCH_FAST 0 /* If using a fast search */

#define OS_SEMA_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 4096 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

