CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document
ARM Cortex-M0 — Keil Suite

Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing

of this document does not give you any license to these patents.

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

pVision is a registered trademark of Keil Elektronik GmbH / Keil Software Inc. ARM and Cortex are registered trademarks of ARM
Limited. All other trademarks are the property of their respective owners.

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

1

~N o o1 B~

Table of Contents

INTRODUGCTION ..ottt ettt e e ettt e s ettt e e s ebb e e e s eabeeessabeseesbeesssssbaesesbasessssbesesssbensesan 6
1.1 DISTRIBUTION CONTENTS tittiiiiiiittttitieessiiittttttteesessiisbssteessssssssbsssessssssassssssssesssssssbssssesssssisssrssssssesss 6
O 1Y T - 1 L] TSR 6

TARGET SETUP oot ettt ettt ettt ettt e e s et et e e sttt e e sbat e e s ebbaeessabbeessbaseesssbenessabensesaes 7
2.1 OS HEAP _SIZE AND OS STACK SIZE SET-UP .eciiiiiiciiciectie sttt steesve e sneesnaesraeas 7
2.2 INTERRUPT STACK SET=UP ..utiiiiiitiiieiitiie e ettt e e s ettt e s stte e s s ettaessasaessssbaessaasbesesssbasessbeesssssbesssssaesssssrens 8
2.3 MULTITHREADING PROTECTION ..uutiiiiiutiieeiitieeeiesteeesstteessesteessssasssssbsessssssessssssesssssssesssssessssssssssssssens 9

2.3.1 Standard Library Multithreading Protection..........cccccevviiiieeieieeie e 10

2.3. 1.1 FUN PrOtECLION oottt ettt e e e e e e e e e e an e 10
2.3.1.2 Partial ProtECHIONccovvviee ettt st e e s e e e s erne e e e e 11

2.3.2 MicroLIB Multithreading ProteCtion..........coccoviiieiiiiiiieiese e 12

INT ERRUP TS oottt ettt ettt sttt e e s ettt e e s st et e e sabeeesasbeeesaabeeeesbbeaesasbbesesabeaeessbbeeesareeeeins 13
3.1 INTERRUPT HANDLING ...ouuttiiiieeeee ittt e e e e ettt et e e e e s ettt it et e e e s s sabb b et e e s e e s ssbbbbbeeseesseasbbbbeessesssearbbaaeeeeas 13

3. L1 INErTUPE TADIE SIZE ..ttt 13

312 INErTUPL INSTAIIET .ot 15
3.2 INTERRUPT PRIORITY AND ENABLINGcoiiiittttiiteietiiitittiee e e e ssitbttree s s e s s sitbbbbee s e e s s s sabbbas s e e s s ssanbbaeeeeeas 16
3.3 FAST INTERRUPTS ettt it ittt ettt e e sttt e e e e e e s bbbt e e e e e e s e b bbbt e e e e e s s e bbb b b e e e e e e s eas bbb b e e s eesssasabbbeeeeeeas 16
3.4 NESTED INTERRUPTS ...ciiiittttiieeiiiiittttie e e e e s sibbbatessessssbbbaaeeseesssbbbbbeeseessaabb bbb eeseessaasbbbbeeseesssabbbbeeeeeeas 19

STACK USAGEttt st e et e e s s b e e s s e b e e e s st b e e s sibbaesssbbeeesasbeeeeans 20

] N RO I I 1T 21

CHIP SUPP ORT oottt ettt ettt e e ettt e e st et e e s ettt e e e ettt e e s et et e s sbaeeesaateeessabeeeesasbeeesanreeesranes 24

IMEASUREMENTS ...ttt ettt e et e e st e e s ettt e s et et e e s bt e e e sasbeeessbateessabeeesssbbeessaneeeessanes 25
B0 R Y/ 1 =11V, [0) = 2T 25
A I 1 =1 N[O 270 TR 27

APPENDIX A: BUILD OPTIONS FOR CODE SIZEooo oottt eeee e 31
8.1 CASE 0: IMINIMUM BUILD .vvvviiiiiiiiitteiieee e e s sttt e e e e e s sstbtatsaessssssabateaseessssbtssessessssssbbaaesseesssassrrrensseeas 31
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORYuvvieiiitiieeiiitiieesteieessiteeessaieessvenesssnnns 32
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY .eiiiiiiiittttiieeeeiiiiiitieeeeessssisnsiessesssssssssssseesssssssssssssesns 33
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPENDoccvvvvieeiiveeeenne 34
8.5 CASE4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBINcccoitviieiiiiieeiitieee st 35
8.6 CASE 5.+ EVENTS/ IMAILBOXESoieiiutiieeetiieesettee e s sttee s s sttt s e s etasessibtsessasbassssabtassssabasesssbaeessbensessanns 36
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...c.tiittitieieeieiesiestesiestesieeseesesaestesbesbesseeneesaesseseeseessesneans 37
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION)covtieniienieisiesieeeeesie e 38
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...vvvviiieeiiiiireiieieesseeiirieeeeesssssnsneeseees 39

Rev 1.1 Page 3

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

List of Figures

FIGURE 2-1 PROJECT FILE LIST woiiitiiiitii ittt ctte et e stee et e st e st e e ste e s ste e e stee s teeenbaesstaesnbaessbeeenbeesstneenbeessteeenseeesees 7
FIGURE 2-2 GUI SET OF HEAP AND STACK SIZESvtiiitiiiiteeiiteeeiteesiteeesteessteeasteesstesssseesstesansesssssssssesssssssnsessssns 8
FIGURE 2-3 GUI SETOF OS_ ISR STACK wiiiciiiiiiiiiiniin it bbb s 9
FIGURE 2-4 GUI SETOF OS_KEIL REENT ...coctititititititiii ittt bbb 10
FIGURE 2-5 C LIBRARY HELP .. .ooiiiii ittt sttt ettt s e e st e e sate e s nb e e snbe e s nbeesnte e s beesnteesnbeennreeanes 12
FIGURE 3-1 GUI SET OF THE INTERRUPT TABLE SIZEcttiiiiitieeeectie e e ettt e e eettee e e ettee e e etae e e setaeeessataeeesaaeeeseaaeeas 14
FIGURE 3-2 GUI SET OF THE INTERRUPT TABLE SIZEcttiieiitieeeectie e e ettt e e eettee e e ettee e e etaeeeseaaeeeesataeessaneeesenveeas 15
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...ccoiutieeiiiieeeeitreeeeitteeeeetee e eeaeee e 25
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGSccittieiitieeeeiteeeecitreeeeetee e eearee e eavees 27

Rev 1.1 Page 4

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

List of Tables

TABLE 1-1 DISTRIBUTION ..vtiiiteiitteiiteeiteeeiteesteesssesassseassesasesassessssssassessssssessesssssesssesesssessssesssesssssesssessseessnes 6
TABLE 2-10S STACK SIZE ANDOS HEAP SIZE ..o 7
TABLE 2-2 COMMAND LINE SET OF HEAP AND STACK SIZEScutviieiitieeeeeiie e e ettt e e e eteeeeetveeeseaveeeseaveeessntaeeeenes 8
TABLE 2-3 0S5 TSR STACK ittt bbb bbb bbb bbb bbb 8
TABLE 2-4 COMMAND LINE SETOF OS_ ISR STACK cciiiiiiiiiiiiicini s 9
TABLE 2-5 COMMAND LINE SET OF MULTITHREAD CONFIGURATIONcoitiiiitieiteeeteesteeenreessteeesseessrneenseessenas 10
TABLE 2-6 SETTING A TASK TO USE RE-ENTRANT LIBRARYeiitiiiiieiiteeitiesiteesteesnteesteesnsessressnsesssssensessssns 11
TABLE 3-1 ABAssT CORTEXMO KEIL.S INTERRUPT TABLE SIZINGccccevviiiiiiiiiiiiii e 13
TABLE 3-2 COMMAND LINE SET THE INTERRUPT TABLE SIZE......cuutiiiitiieeeitieeeeiteee e s etieeeeetteeeeeareeessaveeeeanreeeeans 13
TABLE 3-3 OVERLOADING THE INTERRUPT TABLE SIZING FOR ABASST . C euvreeeerreeeiirreeeaarreesaisseeesireeesssseesenns 14
TABLE 3-4 ATTACHING A FUNCTION TO AN INTERRUPTcotiiitieiiteeetee st eeteeste e steesbeesneesbeesteessraeenneesnnnas 15
TABLE 3-5 INVALIDATING AN ISR HANDLER.......cutttiiiittieeeittiee e ettt e e sitteeesettaeeeebeeeesetteesasnbtesesnsseeesssreeesasreeenns 16
TABLE 3-6 DISTRIBUTION INTERRUPT TABLE CODE-.......ceeeiitiieeiitreeeiitieeeeitteeesiteeeesisreeesssssessssssesesissesesssseesesns 16
TABLE 3-7 LPC11U24 UART O/ 1 FAST INTERRUPTSvtiitiiiteeitieetee st e stesstessteesbessbesssbessnbesssbassbesssreas 17
TABLE 3-8 FAST INTERRUPT WITH DEDICATED STACK ..eeciitiiieitieeeiitteeeeettteeeeiteeeesetteeesssbaeessssesessasesessnseeeeans 18
TABLE 3-9 REMOVING INTERRUPT NESTING ...veeeiitetieitteeeeittieeeeteeeesesreeesassteessseeeesissesssasssesssassesssisesesssseesenns 19
TABLE 3-10 PROPAGATING INTERRUPT NESTINGccciiitiieeiittieeeiteeeeiitteeeassteeessireeeesesseeesssssesesassesssisesesssseesesns 19
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS 11vtiiiiiiiiitirtiieeessiiitbisiesessssiisssssesssssssssssssesssessinsssssssssesssnnns 20
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ...uttiiiitiieeeiiiee e ittt e e sitteeessttaeeesateeeesnnaeeessstaeessssesessnsnssssssnneanns 22
TABLE 7-1 “C” CODE MEMORY USAGE ...cieiittiiiiiiiieeiitiee e s sitte e e staee e s itteeeasttaeeesntaaaessaaaeassstaesesssesessnsesesssseeeenns 26
TABLE 7-2 ASSEMBLY CODE MEMORY USAGEcciiiitiiieiiiiieeiiir e e sitiee e e stte e e stae e e sstaeeessstaeessnnesessaseessssseeeeans 26
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH ... uuiiiiiiiieiciiee e iitiee e e stee e e stee e e s itveeessstreessnnneeessnnneessnsneeenns 28
TABLE 7-4 MEASUREMENT WITHOUT BLOCKINGcotvieiiittieeeetie e e setteeeeettteeeeteeeesetveeeesnbaeeessreeessaresesanseeeenns 28
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ...vviiiiitiieeiitiieeeetie e e sitteeeeettteeeetaeeesetaeeesssbaeeesnssesesssrenessnseeseans 28
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKINGcccccuvieeeeteeeeeetteeeeettieeeeteeeeseseeeesssseeesessesesssseeessseeeeans 29
TABLE 7-7 LATENCY IMEASUREMENTS ...uuttiiiieeeiiiititeteeeeeeiittteeeeeesssssstssseesesssassssssssssesssnsssssssssessanisssssseessanns 30
TABLE 8-1: CASE O BUILD OPTIONSutvieeiittieeeeteeeeeetreeeaatteeeeesassesessesesassseeesasesessassesessssseessassesessssesesasseesesns 31
TABLE 8-2: CASE L BUILD OPTIONSuttieeeittieeeeteeeeeeteeeesetteeeseesassesesaeseaasseseeaasesessessesesasseeessassesesissesesssseeeeans 32
TABLE 8-3: CASE 2 BUILD OPTIONSceuttteeiittteeeitteeestreeessstaeesssssessasseseaassseessnsssesssssssesssssesssnssssssssssessssseeenns 33
TABLE 8-4: CASE 3 BUILD OPTIONScciutttieiittteeeiteeeesitreeesatteeesasssassasseseaasssessassssesssssssesssssesssnsssesissesesssssseenns 34
TABLE 8-5: CASE 4 BUILD OPTIONScutttieeittteeeitteeesiteeeeastteeesasesessasseseaassseessasssesssssssesssssessssssssssssesesasssseenns 35
TABLE 8-6: CASE 5 BUILD OPTIONSccutttieiittteeeiteeeesitteeeastteeesasssessassesesassseessssssesssssssesssssesssnsssessssesesssssseenns 36
TABLE 8-7: CASE 6 BUILD OPTIONScutttieeittteeeitereesitteeesasteeesssssessasseseaassseessssssesssssssesssssesssnssssssssesesssssseeans 37
TABLE 8-8: CASE 7 BUILD OPTIONSccutttieiittteeeiteeeesitreeesatteeesasssessassesesasssesssssssesssssssesssssessssssssssssesesssssseenns 38
TABLE 8-9: CASE 8 BUILD OPTIONSutvieeeitteeeeeteeeeeitteeeaetteeesessaesesessessaassesessaseseesassesessssseessassesessssesesasseesesns 39

Rev 1.1 Page 5

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

1 Introduction

This document details the port of the Abassi RTOS to the ARM Cortex-MO processor. The software suite
used for this specific port is the MDK-ARM Microcontroller Development Kit, more commonly known as
Keil nVision4; the version used for the port and all tests is V4.50.0.0.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:;

Table 1-1 Distribution

File Name ‘ Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi CORTEXMO_KEIL.s RTOS assembly file for the ARM Cortex-MO to use with
the MDK-ARM

Demo_2 BB _LPC11U24 KEIL.c | Demo code that runs on the NGX LPC11U24 evaluation
board

Demo_3_BB_LPC11U24_KEIL.c | Demo code that runs on the NGX LPC11U24 evaluation
board

Demo_6_BB_LPC11U24_KEIL.c | Demo code that runs on the NGX LPC11U24 evaluation
board

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

To optimize the reaction time of the Abassi RTOS components, it was decided to require the processor to
always operate in privileged mode (which is the default mode for Cortex-M microcontrollers) and to
always use the main stack pointer (MSP). The start-up code supplied in the distribution fulfills these
constraints and one must be careful to not change these settings in the application.

The svcall interrupt (interrupt number -5 / interrupt vector number 11) is not available as it is reserved for
the OS, and the Abassi RTOS uses it.

Rev 1.1 Page 6

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

2 Target Set-up

Very little is needed to configure the Keil uVision4 development environment to use the Abassi RTOS in
an application. All there is to do is to add the files Abassi.c and Abassi CORTEXMO KEIL.s in the
source files of the application project, and make sure the four configuration settings in the file
Abassi CORTEXMO KEIL.s (0S HEAP sIzE and oS STACK SIztE as described in Section 2.1,
0S_ ISR STACK as described in Section 2.2, and 0s N INTERRUPTS as described in Section 3.1.1) are set
according to the needs of the application. As well, update the include file path in the C/C++ compiler
preprocessor options with the location of Abassi .h.

l.-[gllm_ﬂm
File Edit Wiew Project Flash Debug Peripherals Tools SWCS
=N AT - | |
EANES %£| Target1 [=] £i| a
Project L

=54 Targetl
=1-£5 Source Group 1

| %] Abassi_CORTEXMO_KEIL.s

EProject|@E-:--:-l': {} Func... [].,Temp...

Figure 2-1 Project File List

2.1 OS_HEAP_SIZE and OS_STACK_SIZE Set-up

The file Abassi CORTEXMO KEIL.s contains the start-up code for “C” applications built with the Keil
pVision development suite that use the Abassi RTOS. There should be no other start-up file included in
the project.

There are two definitions that are used to set-up the heap size (memory used by malloc ()) and the stack
size for the function main (), which is the highest priority task at start-up (known in Abassi as
Adam&Eve). These definitions are located at around line 30 in the Abassi CORTExMO KEIL.s file and
are shown in the following table:

Table 2-1 0os_STACK_SIZE and OS_HEAP SIZE

IF (:DEF: OS_HEAP SIZE) == {FALSE}
OS_HEAP SIZE EQU 4096 ; Heap size (malloc()) in bytes / Set-up to your needs
ENDIF
IF (:DEF: OS STACK SIZE) == {FALSE}
0S STACK SIZE EQU 1024 ; A&E stack size in bytes / Set-up to your needs
ENDIF

A heap size of 4096 bytes and a stack size of 1024 bytes are the values set in the distribution code; modify
these values according to the needs of the application.

Rev 1.1 Page 7

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

Alternatively, it is possible to overload the values of os HEAP sIZE and OS STACK SIZE Set in
Abassi CORTEXMO KEIL.s by using the assembler command line option -predefine and specifying
the desired heap size and stack size as shown in the following example, where the heap size is set to 2048
bytes, and the stack size is set to 512 bytes:

Table 2-2 Command line set of Heap and Stack sizes

armasm .. -predefine “OS_HEAP_ SIZE SETA 2048” -predefine “OS_STACK SIZE SETA 512" ..

The heap and stack sizes can also be set through the GUI, in the “Asm” menu, as shown in the following
figure:

3

k4 Options for Target Target 1'

Device] Target] Cutput] Listing] User] C/C++ Asm l Linker l Debug] Ltilities]

Conditional Assembly Contral Symbols

Define: |O S_HEAP_SIZE=2048 OS5 _STACK_SIZE=512

Language / Code Generation

[~ Spiit Load and Stors Multiple
™ Read-Cnly Posttion Independert
[Read-Write Position Independent
[~ Thumb Mode
™ No Wamings

Include | J
Paths

Misc |
Contrals
Assembler NARMMCMSIS'Include - CAKeiNARMMRG NXPAWLPCT1 b —pd "0S_HEAP_SIZE SETA 2048" pd =

control |"0S_STACK_SIZE SETA 512" ist " lst" —aef -0 " 0" —depend " d"
string

ok | cancel | Difautts | Help

Figure 2-2 GUI set of Heap and Stack sizes

2.2 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an
application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate
extra room to the stack of every task in the application to handle the interrupt nesting. This feature is
controlled by the value set by the definition os 1sr_sTack, located around line 35 in the file
Abassi CORTEXMO KEIL.s. To disable this feature, set the definition of 0s ISR sTAcK to a value of
zero. To enable it, and specify the interrupt stack size, set the definition of 0s_ISR STACK to the desired
size in bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid
stack feature is enabled and a stack size of 1024 bytes is allocated; this is shown in the following table:

Table 2-3 0s_ISR_STACK

IF (:DEF: OS_ISR STACK) == {FALSE}
0OS_ISR STACK EQU 1024 ; If using a dedicated stack for the nested ISRs
ENDIF ; 0 1if not used, otherwise size of stack in bytes

Rev 1.1 Page 8

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

Alternatively, it is possible to overload the values of 0S ISR STACK set in Abassi CORTEXMO KEIL.s
by using the assembler command line option -predefine and specifying the desired hybrid stack size as
shown in the following example, where the hybrid stack size is set to 512 bytes:

Table 2-4 Command line set of 0S_ISR_STACK

armasm .. —predefine “OS_TISR STACK SETA 512" ..

The hybrid stack size can also be set through the GUI, in the “Asm” menu, as shown in the following
figure:

3

kJ Options for Target 'Target 1'

Device] Target] Output] Listing] User] C/C++ Asm] Linker] Debug] Ltilities]

Conditional Assembly Contral Symbols

Define: |OS_ISF-:_STACK=512

i Language / Code Generation

[Spilit Load and Store Multiple
™ Read-Cnly Postion Independent
I Read-Write Position Indspendent
[~ Thumb Mode
[~ Mo Wamings

Include

Paths J
Misc |

Controls

Assembler |-cpu Cortex-MO —pd "__EVAL SETA 1" -g —apes=interwork -1 C:\KeilhARMMWRY21Nne - C:\Keil -

control [\ARM\CMSISNInclude 1 C:AKeNARMN NG NXPALPC 11 Lbee -pd "05_ISR_STACK SETA 512" ist
string s

ok | Cancel | Defauls Help

Figure 2-3 GUI set of 0s_ISR_STACK

2.3 Multithreading protection

By default, the Keil “C” runtime library is not multithread safe. There are two aspects to take into account
when protecting the library for multithreading. The first one involves reentrance; a few library functions
are not reentrant, therefore two tasks accessing the same function at the same time can create major issues.
A good example of non-reentrant functions are the dynamic memory allocation, malloc () and free ().
As they internally use a static buffer, a few pointers and some linked lists, if two tasks access the internals
of the dynamic memory allocation at the same time, corruption could occur. Protecting the non-reentrant
functions is straightforward: all there is to do is to make sure there is only a single task that can access the
function at any time. This is done with a mutex, as it is the perfect mechanism to guarantee exclusive
access to a resource.

The second type of function and variables that are not multithread safe are due to internal data used by the
library; data that is truly a global resource. Such examples of these are: the errno variable or the 1ocale
information. The only efficient way to protected these functions and variables against multithreading is to
have the library setup to use a per task internal static data. There are multiple ways to implement the data
swapping, but fundamentally, if the library does not provided such a swapping mechanism, it becomes
cumbersome to solve the issue. It would require manually swapping the contents, by copying the
individual internal static variables of the library at every task switch.

Rev 1.1 Page 9

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

Keil’s standard library fully supports mechanisms to make the library multithread safe. The MicroLIB
does not have such a mechanism. The following sub-sections describe how to make each of the two
libraries multithread safe.

2.3.1 Standard Library Multithreading Protection

The Keil standard library (not the MicroLIB, see Section 2.3.2 for the MicroLIB) can be set to be
completely protected against reentrance and also be multithread-safe. The type of multithreading
protection is selected according to the definition of the build option 0s KEIL REENT; this is not a standard
build option, as it only is used with the Keil development suite on ARM processors. If this build option is
not defined, or if it is defined with a value of zero, the library is neither protected against reentrance nor
multithreading. If the build option is positive, the library is fully multithread-safe and protected against
reentrance for every task in the application. If the build option value is negative, only user-selected tasks
that are configured access the library in a multithread-safe fashion; the library still remains protected
against reentrance for all tasks.

2.3.1.1 Full Protection

For full multithreading protection of the standard library, all there is to do is to define the build option
0S_KEIL REENT with a positive value. The build option os xerrL ReEeNT for the multithreading
protection must be given to the compiler. This can be done with the command line option -p and
specifying the setting with the following:

Table 2-5 Command line set of multithread configuration

armcc .. -DOS_KEIL_REENT=1 ..

The multithreading configuration can also be set through the GUI, in the “C/C++” menu, as shown in the
following figure:

kJ Options for Target Target 1 i
Dievice] Target] Cutput] Listing] User C/C++ lﬁsm] Linker] Debug] Lkilities]
Preprocessor Symbols
Define: |OS_I{EIL_F~!EENT=1
Undefine: |
i Language / Code Generation
I Strict ANSIC Wamings:
Optimization: |Level 3{03) [Enum Container always int cunspecified> -
[+ Optimize for Time I Plain Charis Signed
[~ Split Load and Store Multiple I Read-Only Posttion Independent
[One ELF Section per Function [Read-Write Posttion Independent
Include
Paths | J
Misc |
Contrals
Compiler | —cpu Cortex-M0 -D__EWAL g 03 COtime —apes=interwork -1 C:A\KeilARMAVRY2 1 4ne -1 C: el -
control VARMVCMSIStnclude -l CAKeilARMAIRc NXPALPC 11 Lo -DOS_KEIL_REENT="1" o "*o" -
string i
ok | cancel | Defauts Help

Figure 2-4 GUI set of 0S_KEIL REENT

Rev 1.1 Page 10

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

2.3.1.2 Partial Protection

The use of full multithread protection for the library requires 96 bytes of extra data memory for each task in
the application. The extra memory required is not due to Abassi, but it is the amount of memory the library
requires to hold all its internal static data. It may not be desirable to use multithread protection for all tasks,
or on data memory restricted applications it may be impossible to use full multithreading protection.
Setting the build option 0s XEIL REENT to a negative value allows the designer to select the tasks where
multithreading protection is required. The library modules that are non-reentrant are still protected by a
mutex; only the static area of the library becomes under control. The build option 0s_KEIL REENT is set
the same way as described in the previous section, only it must be set to a negative value for partial
protection.

Partial multithreading means that only the tasks that are set up to use the library in a multithread safe
manner will require the 96 bytes block of extra data memory. Not only is memory needed for the library
internal data, but if file 1/0O is used in the task, more memory is also needed for the buffering of the file or
stream. It may be good practice to use the standard library function setbuf (), Or setvbuf () to tailor
each stream buffer size.

If a task uses none of the library multithread unsafe static data, then the task does not need to access the
library internal data in an exclusive manner, so there is no need to reserve and assign the memory block of
96 bytes of data memory. If a task uses the library multithread unsafe static data, but it is the only task
using that data, there is still no need to make the library multithread safe for that task. Only when two or
more tasks use the same internal data of the library do these tasks need to access the library in a multithread
safe manner.

For more information on which library functions and/or variables are non-reentrant and/or multithread
unsafe, refer to Section 2.3.2.

A task is set to use the library in a multithread safe manner with the following:

Table 2-6 Setting a task to use re-entrant library

#include “Abassi.h”

TSK_t *TskReent
int ReentData[96/sizeof (int)];

/* First the task must be created */
/* in the suspended state */
TskReent = TSKcreate (“TaskName”, TskPrio, StackSize, TaskFct, 0);

memset (&ReentData[0], sizeof (ReentData), 0); /* Buffer must be set to zero */
TskReent->XtraData[0] = (intptr t)&ReentData; /* Attach the libspace to the task */
TSKresume (TskReent) ; /* The task may now be resumed */

The declaration “int ReentData[96/sizeof(int)];” can be replaced by a dynamic memory
allocation of (size t)96. If atask does not require access to the library in a multithread safe manner,
the above code is not required.

Rev 1.1 Page 11

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

2.3.2 MicroLIB Multithreading Protection

Contrary to the standard library, the MicroLIB does not offer internal support for multithreading protection.
Some functions in the Keil C MicroLIB runtime library are not reentrant. If these functions are only used
in one task, then there will be no problems. But if they are used by more than one task, they need to be
protected by an Abassi mutex. The preferred way is to re-use the G _osmutex for all multithread unsafe
functions, as this will avoid deadlocks. Therefore, non-reentrant functions must be manually protected with
a mutex.

For the multithread unsafe functions and/or variables, there is no simple way to make these functions or
variables multithread safe.

Figure 2-5 shows the page in the uVision help that describes all the functions that are multithread unsafe.
When there is mention of mutex_*, it means the function is not reentrant and must be protected by a
mutex. When there is mention of user libspace OF user perthread libspace, it indicates the
function, or variable, is not multithread safe, as it relies on static data.

& B
Hide Locate Back Print Options
Conterts | Index ~ Search]Favon‘_tes] Thread-safe C library functions r

Type in the word(s) to search for:

m

The following table shows the C library functions that are thread-safe.

|-mutex_ =12
T | Display | Table 1. Functions that are thread-safe
Select topic: b Functions Description
Title Location Rank
Cand C++ Libraries ... Cand C++... 1 calloc(), The heap functions are thread-

Libraries and Floatin... Lbraresa.. 2
Libraries and Floatin... Libraresa... 3
Libraries and Floatin... Libraresa... 4

safe if the _mutex * functions are

free(), implemented.

A single heap is shared between
all threads, and mutexes are
used to avoid data corruption
realloc() when there is concurrent access.
Each heap implementation is
responsible for doing its own
locking. If yvou supply your own
allocator, it must also do its own
locking. This enables it to do fine-
grained locking if required, rather
than protecting the entire heap
with a single mutex (coarse-
grained locking).

mallec(),

[Search pr\?vious results alloca() alloca() is thread-safe because
[Match similar words it allocates memory on the stack.
™ Search titles only

Figure 2-5 C Library Help

Rev 1.1 Page 12

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt
context. For all interrupt sources (except interrupt numbers less than -1) the Abassi RTOS provides an
interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the
kernel uses it to know if a request occurs within an interrupt context or not. Second, using this dispatcher
reduces the code size, as all interrupts share the same code for the decision making of entering the kernel or
not at the end of the interrupt: there is no need to add a preamble / epilogue in the functions handling the
interrupts.

The distribution makes provision for 241 sources of interrupts, as specified by the token
OS N INTERRUPTS in the file Abassi CORTEXMO KEIL.S, and the internal default value used by
Abassi.c. Eventhough the Nested Vectored Interrupt Controller (NVIC) peripheral supports a maximum
of 256 interrupts on the Cortex-MO, the first 15 entries of the interrupt vector table are hard mapped to
dedicated handlers (the interrupt number -1, which is attached to sysTick, is not hard mapped but is
handled by the ISR dispatcher).

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 256 interrupts as they typically only handle between 64 and 128 sources of
interrupts. The interrupt table can be easily reduced to recover code space, and at the same time recover the
same amount of data memory. There are two files affected: in Abassi CORTEXMO KEIL.s, the ARM
interrupt table itself must be shrunk, and the value used in the file Abassi.c, in order to reduce the ISR
dispatcher table look-up. The interrupt table size is defined by the token 0s N INTERRUPTS in the file
Abassi CORTEXMO KEIL.s around line 35. For the value used by Abassi.c, the default value can be
overloaded by defining the token 0s N _INTERRUPTS when compiling abassi.c . The distribution table
size is set to 241; that is the NVIC maximum of 256 minus the 15 hard mapped exceptions.

For example, the LPC11U24 device from NXP uses only the first 48 entries of the interrupt table (32
external interrupts plus the standard 16 exceptions). The 256 entries table can therefore be reduced to 48.
The value to set in Abassi CORTEXMO KEIL.s files is 33, which is the total of 48 entries minus 15
(there are 15 hard mapped exceptions). The changes are shown in the following table:

Table 3-1 Abassi_CORTEXMO_KEIL.s interrupt table sizing

IF (:DEF: OS N INTERRUPTS) == {FALSE} ; # of entries in the interupt table mapped to
OS_N_INTERUPTS EQU 33 ; ISRdispatch ()
ENDIF

Alternatively, it is possible to overload the 0s N INTERRUPTS value set in Abassi CORTEXMO KEIL.s
by using the assembler command line option -predefine and specifying the desired setting with the
following:

Table 3-2 Command line set the interrupt table size

armasm .. —-predefine “0S N INTERRUPTS SETA 33"

Rev 1.1 Page 13

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

The overloading of the default interrupt vector look-up table used by abassi.c is done by using the
compiler command line option -p and specifying the desired setting with the following:

Table 3-3 Overloading the interrupt table sizing for Abassi.c

armcc .. -DOS_N_INTERRUPTS=33 ..

The interrupt table size used by abassi CORTEXMO KEIL.s can also be set through the GUI, in the
“Asm” menu, as shown in the following figure:

Options for Target Target

Device | Target | Output | Listing | User | C/C++ Asm | Linker | Debug | Utilities |

— Conditional Assembly Contral Symbols
Define: IOS_N_INTEHHUPTS:,B

Undefire: I

— Language / Code Generation
[~ Split Load and Store Multiple

[~ Read-Only Position Independent

[~ Read-Write Position Independent

[~ Thumb Mode

[~ No Wamings

Include I
Paths

Misc I
Controls
Assembler |-cpu Cortex-MO —pd "__EWAL SETA 1" -g —apcs=interwork -1 C:\Kei"ARMVRY31Nne - C:\Keil
control VARMMCMSISHInclude - C:\AKeil'ARMAINc\NXPALPC11Lbee —pd "OS_N_INTERRUPTS SETA 33" -
string

ok | Defauts |

Figure 3-1 GUI set of the interrupt table size

Rev 1.1 Page 14

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

The interrupt table look-up size used by abassi.c can also be overloaded through the GUI, in the
“C/C++” menu, as shown in the following figure:

H B
Options for Target Target ||
Device I Target I Output | Listing | User C/Cs+ |Asrn I Linker I Debug | Ltilities |
— Preprocessor Symbols
Define: |OS_N_INTERRUPTS=33
Undefine: I
— Language / Code Generation
[Strict ANSIC Wamings:
Optimization: ILeveI 0400) vl I Enum Container always int I:unspecﬂied: YI
imi [~ Plain Charis Signed

[~ Optimize for Time r 9 ™ Thumb Mode
[~ Split Load and Store Multiple I Read-Only Posttion Independent
" One ELF Section per Function [Read-Write Postion Independent

Include

| Paths I J
Misc I
Contrals
Compiler |-c —cpu Cortex-M0 -D__EVAL -g 00 —apcs=interwork 4 C:\Keil' ARM'RV314nc - C:\Kei' ARM -
cortrol [NCMSIS nclude -1 C:AKeilARM NG \NXPWLPC 11 -DOS_N_INTERRUPTS="33" o "o" -
string =
ok | cancel | Defouts | Help

Figure 3-2 GUI set of the interrupt table size

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS
component 0SisrInstall () to specify the interrupt number and the function to be attached to that
interrupt number. For example, Table 3-4 shows the code required to attach the sysTick interrupt to the
RTOS timer tick handler (TtMtick):

Table 3-4 Attaching a Function to an Interrupt

#include “Abassi.h”

6SStart ()7

gsisrlnstall(—l, &TIMtick) ;

/* Set-up the count reload and enable SysTick interrupt */
.. /* More ISR setup */

0Seint (1) ; /* Global enable of all interrupts */

NOTE: 0SisrInstall () uses the interrupt number, NOT the interrupt vector number.

Rev 1.1 Page 15

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

At start-up, once osstart () has been called, all 0s_ N INTERRUPTS interrupt handler functions are set to
a “do nothing” function, named 0sinvalidISrR(). If an interrupt function is attached to an interrupt
number using the osisriInstall () component before calling osstart (), this attachment will be
removed by 0Sstart (), S0 0OSisrInstall () should never be used before osstart () hasran. When an
interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the
handling function can be set back to 0SinvalidIsr (). Thisis shown in Table 3-5:

Table 3-5 Invalidating an ISR handler

#include “Abassi.h”

/* Disable the interrupt source */
OSisrInstall (Number, &0SinvalidISR);

When an application needs to disable/enable the interrupts, the RTOS supplied functions osdint () and
0Seint () should be used.

The Nested Vectored Interrupt Controller (NVIC) on the Cortex-MO does not clear the interrupt generated
by a peripheral; neither does the RTOS. If the generated interrupt is a pulse (as for the sysTick interrupt),
there is nothing to do to clear the interrupt request. However, if the generated interrupt is a level interrupt,
the peripheral generating the interrupt must be informed to remove the interrupt request. This operation
must be performed in the interrupt handler otherwise the interrupt will be re-entered over and over.

3.2 Interrupt Priority and Enabling

To properly configure interrupts, the interrupt priority must be set, and the peripheral configured to
generate interrupts and enable them. There is no software provided to perform these operations, as this
functionality is already available. First, Keil pVision4 supports the Cortex Microcontroller Software
Interface Standard (CMSIS), which provides everything required to program the processor peripherals.
Second, most chip manufacturers provide code to configure the specifics on their devices.

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component
from Abassi, and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all
there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector
table used by the Cortex-MO processor. The area of the interrupt vector table to modify is located in the
file Abassi CORTEXMO KEIL.s around line 90. For example, on a Texas Instruments LPC11U24 device,
TIMER16 #0 is attached to interrupt number 16 (interrupt vector number 32) and the TIMER16 #1 is
attached to the interrupt number 17 (interrupt vector number 33). The code to modify is located in the
macro loop that initializes the interrupt table that sets the ISR dispatcher as the default interrupt handler.
All there is to do is add checks on the token holding the interrupt number, such that, when the interrupt
number value matches the desired interrupt number, the appropriate address gets inserted in the table
instead of the address of I1srdispatch (). The original macro loop code and modified one are shown in
the following two tables:

Table 3-6 Distribution interrupt table code

GBLA INT_ NMB ; Interrupt number in the loop
INT NMB SETA -1 ; Can’t use < as < is unsigned
WHILE INT NMB != (OS N INTERRUPTS-1); Map all external interrupts to ISRdispatch ()
DCD ISRdispatch
INT NMB SETA INT NMB+1
WEND

Rev 1.1 Page 16

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

Attaching a fast interrupt handler to the UART #0 and another one to UART #1, assuming the names of the
interrupt functions to attach are respectively UARTO IRQhandler () and UART1 IRQhandler(), iS
shown in the following table:

Table 3-7 LPC11U24 UART 0/ 1 Fast Interrupts

EXTERN TIMER16_ 0 IRQhandler
EXTERN TIMER16_1 IRQhandler

GBLA INT NMB ; Interrupt number in the loop
INT NMB SETA -1 ; Can’t use < as < 1s unsigned
WHILE INT NMB != (OS_N_INTERRUPTS-1); Map all external interrupts to ISRdispatch/()
IF INT NMB == 16 ; When is interrupt #16, set TIMER16 #0 handler
DCD TIMER16 0 IRQhandler
ELSEIF INT NMB == 17 ; When is interrupt #16, set TIMER16 #1 handler
DCD TIMER16 1 IRQhandler
ELSE ; All others interrupt # set to ISRdispatch()
DCD ISRdispatch
ENDIF
INT NMB SETA INT NMB+1
WEND

It is important to add the ExTERN statement otherwise there will be an error during the assembly of the file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

Rev 1.1 Page 17

Abassi RTOS

Port — ARM Cortex-MO0 — Keil Suite

2012.12.04

Even if the hybrid interrupt stack feature is enabled (see Section 2.2), fast interrupts will not use that stack.
This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To
make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the
call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in
the regular interrupt dispatcher. Reusing the example of the TIMER #0 on the LPC11U24 device, this

would look something like:

Table 3-8 Fast Interrupt with Dedicated Stack

ELSEIF INT NMB == 16
DCD Timerl6 0 _preHandler
THUMB
ALIGN
AREA | .text|, CODE, READONLY

EXTERN TIMER16 0 handler

Timerl6 0 preHandler

SPACE TIMER16 0 stack size
TIMER16 0 stack

cpsid I

mov r0, sp

ldr sp, =TIMER16 0 stack
cpsie I

push {r0, 1r}

bl TIMER16 0 handler
pop {r0, 1r}

mov sp, r0

bx 1r

ALIGN

AREA HEAP, NOINIT, READWRITE, ALIGN=3

’

’

Set the address of the pre handler
in the interrupt table

Disable ISR to protect against nesting
Memo current stack pointer

Stack dedicated to this fast interrupt
The stack is now hybrid, nesting safe

Preserve original sp & EXC RETURN

Enter the interrupt handler
Recover original sp & EXC RETURN

Recover pre-isr stack
Exit from the interrupt

Room for the fast interrupt stack

The same code, with unique labels, must be repeated for each of the fast interrupts.

Rev 1.1

Page 18

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

3.4 Nested Interrupts

The interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will interrupt
the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 8 levels,
where level 0 is the highest and 7 is the lowest. This implies that the RTOS build option
OS_NESTED INTS must be set to a non-zero value. The exception to this is an application where all
enabled interrupts handled by the RTOS ISR dispatcher are set, without exception, to the same priority;
then interrupt nesting will not occur. In that case, and only that case, can the build option
OS_NESTED INTS be setto zero. As this latter case is quite unlikely, the build option 0S NESTED INTS
is always overloaded when compiling the RTOS for the ARM Cortex-M0. If the latter condition is
guaranteed, the overloading located after the pre-processor directive can be modified. The code affected in
Abassi.h is shown in Table 3-9 below and the line to modify is the one with #define
OX NESTED INTS 1:

Table 3-9 Removing interrupt nesting

#elif defined(CC ARM)

#define OX NESTED INTS 0 /* The ARM has 8 nested (NIVC) interrupt levels */

Or if the build option 0s_NESTED INTS is desired to be propagated:

Table 3-10 Propagating interrupt nesting

#elif defined(_CC_ARM)

#define OX NESTED INTS OS NESTED INTS

The Abassi RTOS kernel never disables interrupts, but there is a few very small regions within the interrupt
dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20
processor instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS
component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only
once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at
the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already
active. This means that only the interrupt handler function operates in an interrupt context, and only the
time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the
interrupt controller.

Rev 1.1 Page 19

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,
the stack holds the register context that was preserved when the task got blocked or preempted. Also, when
an interrupt occurs, the register context of the running task must be preserved in order for the operations
performed during the interrupt to not corrupt the contents of the registers used by the task when it got
interrupted. For the Cortex-MO, the context save contents of a blocked or pre-empted task is different from
the one used in an interrupt. The following table lists the number of bytes required by each type of context
save operation:

Table 4-1 Context Save Stack Requirements
Description Context save

40 bytes

Interrupt dispatcher context save (0S_ISR_STACK == 0) | 40 bytes

Interrupt dispatcher context save (0S_ISR STACK != 0) | 48 bytes

The numbers for the interrupt dispatcher context save include the 32 bytes the processor pushes on the
stack when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is
simply that every task in the application needs at least the area to preserve the task context when it is
preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in
the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So if N
levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR
context save on each task stack, plus any added stack used by all the interrupt handler functions. Finally,
add to all this the stack required by the code implementing the task operation.

NOTE: The ARM Cortex-MO processor needs alignment on 8 bytes for some instructions accessing
memory. When stack memory is allocated, Abassi guarantees the alignment. This said, when
sizing 0S_STATIC STACK Or 0S ALLOC SIZE, make sure to take in account that all allocation
performed through these memory pools are by block size multiple of 8 bytes.

If the hybrid interrupt stack (see Section 2.2) is enabled, then the above description changes: it is only
necessary to reserve room on task stacks for a single interrupt context save (this excludes the interrupt
function handler stack requirements) and not the worst-case nesting. With the hybrid stack enabled, the
second, third, and so on interrupts use the stack dedicated to the interrupts. The hybrid stack is enabled
when the 0s ISR STACK token in the file Abassi CORTEXMO KEIL.s is set to a non-zero value (see
Section 2.2).

Rev 1.1 Page 20

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

5 Search Set-up

The Abassi RTOS build option os_searcH rFasT offers three different algorithms to quickly determine
the next running task upon task blocking. The following table shows the measurements obtained for the
number of CPU cycles required when a task at priority O is blocked, and the next running task is at the
specified priority. The number of cycles includes everything, not just the search cycle count. The number
of cycles was measured using the sysTick peripheral, which decrements the counter once every CPU
cycle. The second column is when 0S SEARCH FAST is set to zero, meaning a simple array traversing.
The third column, labeled Look-up, is when 0s SEARCH FAST is set to 1, which uses an 8 bit look-up
table. Finally, the last column is when os_sEarcH FAST is set to 5 (Keil/Cortex-MO0 int are 32 bits, so
275), meaning a 32 bit look-up table, further searched through successive approximation. The compiler
optimization for this measurement was set to Level 3 (-03), optimized for time. The build options were set
to the minimum feature set, except for option 0s_PRIO_CHANGE set to non-zero. The presence of this extra
feature provokes a small mismatch between the result for a difference of priority of 1, with
0OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option os_SEARCH ALGO is set to a negative value, indicating to use a 2-dimensional
linked list search technique instead of the search array, the number of CPU cycles is constant at 268 cycles.

Rev 1.1 Page 21

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation
1 277 312 353
2 281 320 353
3 289 328 353
4 297 336 353
5 305 344 353
6 313 352 353
7 321 360 353
8 329 317 353
9 337 321 353
10 345 329 353
11 353 337 353
12 361 345 353
13 369 353 353
14 377 361 353
15 385 369 353
16 393 326 353
17 401 330 353
18 409 338 353
19 417 346 353
20 425 354 353
21 433 362 353
22 441 370 353
23 449 378 353
24 457 335 353

When 0s_SEARCH FAST is set to O, each extra priority level to traverse requires exactly 8 CPU cycles.
When 0s_SEARCH FAST is Set to 1, each extra priority level to traverse requires exactly 8 CPU cycles,
except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.
Overall, setting os SEarRCH FAST to 1 adds 39 cycles of CPU for the search compared to setting
OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, ... then there is an
extra 8 cycles needed, but without the 8 times 8 cycle accumulation. Finally, the third option, when
0S_SEARCH_FAST is set to 5, delivers a perfectly constant CPU usage, as the algorithm utilizes a
successive approximation search technique (when the delta is 32 or more, the CPU cycle count is 363, for
64 or more, it is 373).

Rev 1.1 Page 22

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

The only real observation, when looking at this table, is that the third option, when 0s SEARCH FAST is set
to 1, is almost all the time either less CPU efficient than the first option, the one when 0s_SEARCH FAST is
set to 0, or less efficient than the third option 0s SEaRCH FAST is set to 5. So, the build option
0S_SEARCH FAST should never be set to 1, as it is the least efficient method. The other observation is that
the first option (0s SEaRCH FAST set to 0) delivers better CPU performance than the third option
(os_SEARCH FAST set to 5) when the search spans less than 10 priority levels. So, if an application has
tasks spanning less than 10 priority levels, the build option os_searca FasT should be set to O; for all
other cases, the build option 0s_searcH FasT should be set to 5.

Setting the build option 0s SEARCH ALGO to a non-negative value minimizes the time needed to change
the state of a task from blocked to ready to run, and not the time needed to find the next running task upon
blocking/suspending of the running task. If the application needs are such that the critical real-time
requirement is to get the next running task up and running as fast as possible, then set the build option
0S_SEARCH_ALGO to a negative value.

Rev 1.1 Page 23

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

6 Chip Support

No custom chip support is provided with the distribution code because the Keil puVision suite supports the
Cortex Microcontroller Software Interface Standard (CMSIS). Therefore, all standard peripherals on the
Cortex-M can be accessed through the CMSIS. Also, most device manufacturers provide code to configure
the peripherals on their devices. The distribution code contains some of the manufacturer’s open source
libraries, e.g NXP.

Rev 1.1 Page 24

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the
RTOS is used on the ARM Cortex-M0 and compiled with Keil’s pVision4. The CPU cycles are exactly
the CPU clock cycles, as the processor executes one instruction at every clock transition.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the
smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the
features. For both cases, names are not part of the build. This feature was removed from the metrics
because it is highly probable that shipping products utilizing this RTOS will not include the naming of
descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of
components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for
the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One
should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the
RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Optimization: Level 3 (-03)
2. Optimize for Time: Disabled
3. Split Load and Store Multiple: Disabled

All other options are disabled, as they do not affect the code generated.

- ik
kJ Options for Target Target 1 e S
Device | Target | Output | Listing | User C/C++]Asm | Linker | Debug | Utiities |
Preprocessor Symbals
Diefine: |
Undefine: |
I Language / Code Generation
[~ Strict ANSIC Wamings:
Optimization: |Level 3{03) [Enum Container always int <unspecified> -
I~ Optimize for Time [Plain Charis Signed
I~ Split Load and Store Multiple [Read-Only Position Independent
[~ One ELF Section per Function [~ Bead-Wiite Position Independent
Include
Paths J
Misc |
Controls
Compiler | —cpu Cortex-M0 -D__EWAL g O3 —apes=interwork - C:\Keil"ARMYRY3 1 \ne - C:A\KeiNARM s
cortrol [NCMSIS\Include - C:\Kei" ARM\Inc \NXP\LPC11Lhec -0 " 0" —omf_browse "™ crf" ~depend "*.d"
string s
0K | Cancel | Defauts | Help

Figure 7-1 Memory Measurement Code Optimization Settings

Rev 1.1 Page 25

Abassi RTOS

Port — ARM Cortex-MO0 — Keil Suite

2012.12.04

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 725 bytes
+ Runtime service creation / static memory < 900 bytes
+ Multiple tasks at same priority < 975 bytes
+ Runtime priority change < 1500 bytes
+ Mutex priority inheritance

+ FCFS

+ Task suspension

+ Timer & timeout < 1950 bytes
+ Timer call back

+ Round robin

+ Events < 2525 bytes
+ Mailbox

Full Feature Build (no names) < 3000 bytes
Full Feature Build (no names / no runtime creation) < 2675 bytes
Full Feature Build (no names / no runtime creation) < 3025 bytes

+ Timer services module

Table 7-2 Assembly Code Memory Usage

Description Size

Assembly code size 300 bytes
Vector table (per interrupt handler entry) +t4 bytes
Hybrid Stack Enabled +16 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its
own data memory to operate, and second, most of the services offered by the RTOS require data memory
for each instance of the service. As the build options affect either the kernel memory needs or the service
descriptors (or both), an interactive calculator has been made available on Code Time Technologies

website.

Rev 1.1

Page 26

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

7.2 Latency

Latency of operations has been measured on a NGX LPC11U24 development board populated with a
48 MHz LPC11U24 device. For the purpose of the latency measurements, the device was clocked at
24 MHz in order to operate the Flash at full clock rate, eliminating the insertion of wait states. All
measurements have been performed on the real platform, with the sysTick timer used to count the cycles.
This means the interrupt latency measurements had to be instrumented to read the sysTick counter value.
This instrumentation can add up to 5 or 6 cycles to the measurements. The code optimization settings that
were used for the latency measurements are:

1. Optimization: Level 3 (-03)
2. Optimize for Time: Enable
3. Split Load and Store Multiple: Disabled

All other options are disabled, as they do not affect the efficiency of the code generated.

k] Options for Target 'Target 1 e
Device] Target] COutput] Listing] User C/C++ lﬂsm] Linker] Debug] Ltilities]
Preprocessor Symbols
Diefine: |
Undefine: |
i Language / Code Generation
I~ Strict ANSIC Wamings:
Optimization: |Level 3(03) = [Enum Container ahways int wnspecified> v
¥ Optimize for Time [Plain Charis Signed
[~ Split Load and Store Multiple [Read-Only Position Independent
[~ One ELF Section per Function [Bead-Wiite Position Independent
Include J
Paths
Misc |
Controls
Compiler | —cpu Cortex-M0 -D__EVAL g 03 Ctime —apcs=interwork - C:AKeiPARMAVRY2 1NN -1 C:\Kail -
cortrol [\ARMMCMSIS\Include - C:\Keil\ ARM\Inc W NXP\LPC111be 0 ™ 0" —omf_browse "*.crf" —depend
string
ok | cancel | Defauls | Help

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very
good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three
tasks were involved:

1. Adam & Eve set to a priority value of 0;
2. Alow priority task set to a priority value of 1;
3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a
mailbox. The first 2 latency measurements use the component in a manner where there is no task
switching. The third measurements involve a high priority task getting blocked by the component. The
fourth measurements are about the opposite: a low priority task getting pre-empted because the component
unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,
through an interrupt is provided.

Rev 1.1 Page 27

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

The first set of measurements counts the number of CPU cycles elapsed starting right before the component
is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

Start CPU cycle count
SEMpost (..); or EVTset(..); or MBXput();
Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task
switching. This means:

Table 7-4 Measurement without Blocking

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used
that blocked the task. This means:

Table 7-5 Measurement with Task Switch

main ()

{

SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

}

TaskPriol ()
{

Start CPU cycle count
SEMpost (..) ; or EVTset(..); or MBXput(..);

Rev 1.1 Page 28

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

The forth set of measurements counts the number of CPU cycles elapsed starting right before the
component blocks of a high priority task until the next ready to run task is back from the component it was
blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

main ()

{

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);

}

TaskPriol ()
{

SEMpost (..) ; or EVTset(..); or MBXput(..);
Stop CPU cycle count

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt
using the component, until the task that was blocked becomes the running task and is back from the
component used that blocked the task. The interrupt latency measurement includes everything involved in
the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the
interrupt code. The interrupt function, attached with 0sisrInstall (), is simply a two line function that
uses the appropriate RTOS component followed by a return.

Table 7-7 lists the results obtained, where the cycle count is measured using the sysTick peripheral on the
Cortex-MO0. This timer decrements its counter by 1 at every CPU cycle. As was the case for the memory
measurements, these numbers were obtained with a beta release of the RTOS. It is possible the released
version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR
function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt
stack and branch to the address specified in the interrupt vector table. The latency measurement includes
the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used
between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in
the osisrInstall (). The interrupt overhead when entering the kernel is calculated using the results
from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU
cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization
component.

The hybrid interrupt stack feature was not enabled, neither was the saturation bit, in any of these tests.

Rev 1.1 Page 29

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

In the following table, the latency numbers between parentheses are the measurements when the build
option 0s_SEARCH ALGO is set to a negative value. The regular numbers are the latency measurements
when the build option 0s_SEARCH ALGO is set to 0.

Table 7-7 Latency Measurements

Description Minimal Features Full Features
Semaphore posting no task switch 144 (143) 218 (220)
Semaphore waiting no blocking 147 (145) 231 (233)
Semaphore posting with task switch 232 (262) 376 (403)
Semaphore waiting with blocking 251 (247) 406 (409)
Semaphore posting in ISR with task switch 478 (507) 636 (661)
Event setting no task switch n/a 214 (216)
Event getting no blocking n/a 254 (256)
Event setting with task switch n/a 398 (425)
Event getting with blocking n/a 424 (427)
Event setting in ISR with task switch n/a 659 (684)
Mailbox writing no task switch n/a 275 (277)
Mailbox reading no blocking n/a 279 (281)
Mailbox writing with task switch n/a 450 (477)
Mailbox reading with blocking n/a 459 (462)
Mailbox writing in ISR with task switch n/a 706 (731)
Interrupt Latency 45 45
Interrupt overhead entering the kernel 246 (245) 260 (258)
Interrupt overhead NOT entering the kernel 68 68

Context switch 55 53

Rev 1.1 Page 30

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build
Table 8-1: Case 0 build options

#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When O0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 2 /* Maximum number of requests in ISRs */
#define OS_MIN_STACK USE 0 /* Not minimizing the ernel stack usage */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO MIN 2 /* Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 0 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC MBX 0 /* If !'=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 0 /* If !'=0 how many semaphores and mutexes */
#define OS_STATIC STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.1 Page 31

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04
8.2 Case 1: + Runtime service creation / static memory
Table 8-2: Case 1 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 2 /* Maximum number of requests in ISRs */
#define OS_MIN_STACK_ USE 0 /* Not minimizing the ernel stack usage */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_ PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO MIN 2 /* Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 0 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_ RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.1

Page 32

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04

8.3 Case 2: + Multiple tasks at same priority
Table 8-3: Case 2 build options

#define OS ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MIN_STACK_ USE 0 /* Not minimizing the ernel stack usage */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_ PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = O0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_ RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.1 Page 33

Abassi RTOS

Port — ARM Cortex-MO0 — Keil Suite

2012.12.04

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend
Table 8-4: Case 3 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S MIN STACK USE
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE RUN MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

O OO OOk UK U0l O 0000 ORFRPNREFOORF OO WwWOOOHROOoOOo

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

When !=0, RTOS supplied OSalloc

When 0: pre-emptive, when non-zero: cooperative */

If event flags are supported

Allow the use of 1lst come lst serve semaphore
If IdleTask supplied & if so, stack size

Type of logging to use

If mailboxes are used

Maximum number of requests in ISRs

Not minimizing the ernel stack usage

This test validates this

To enable protection against priority inversion */

!= 0 when named Tasks / Semaphores / Mailboxes */
If operating with nested interrupts */
If a task priority can be changed at run time */
Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
Support multiple tasks with the same priority */
Use round-robin, value specifies period in uS */
If create Task / Semaphore / Mailbox at run time */
If using a fast search */
Priority threshold for starving protection */
Maximum Timer Tick for starving protection */
Maximum time on hold for starving protection */
when OS_STATIC_MBOX != 0, # of buffer element */
If !=0 how many mailboxes */
If named mailboxes/semaphore/task, size in char */
If !=0 how many semaphores and mutexes */
if !=0 number of bytes for all stacks */
If !'=0 how many tasks (excluding A&E and Idle) */
If a task can suspend another one */
!'=0 enables blocking timeout */
=0 gives the timer callback period */
!'=0 includes the timer services module */
!'=0 enables timer & specifies the period in uS */
If tasks have arguments */

*/

*/
*/
*/
*/
*/
*/
*/
*/

Rev 1.1

Page 34

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04
8.5 Case 4: + Timer & timeout / Timer call back / Round robin
Table 8-5: Case 4 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MIN_STACK_ USE 0 /* Not minimizing the ernel stack usage */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.1

Page 35

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04
8.6 Case 5: + Events / Mailboxes
Table 8-6: Case 5 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MIN_STACK_ USE 0 /* Not minimizing the ernel stack usage */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.1

Page 36

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04
8.7 Case 6: Full feature Build (no names)
Table 8-7: Case 6 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MIN_STACK_ USE 0 /* Not minimizing the ernel stack usage */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_ PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 100 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.1

Page 37

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04
8.8 Case 7: Full feature Build (no names / no runtime creation)
Table 8-8: Case 7 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1If event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MIN_STACK_ USE 0 /* Not minimizing the ernel stack usage */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.1

Page 38

Abassi RTOS Port — ARM Cortex-MO0 — Keil Suite 2012.12.04
8.9 Case 8: Full build adding the optional timer services
Table 8-9: Case 8 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MIN_STACK_ USE 0 /* Not minimizing the ernel stack usage */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 100 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 1 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.1

Page 39

