CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document
ARM Cortex-M3 — CCS

Copyright Information

This document is copyright Code Time Technologies Inc. ©2011,2012. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Code Composer Studio, Stellaris and StellarisWare are registered
trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

Abassi RTOS

Port — ARM Cortex-M3 — CCS 2012.05.21

Table of Contents

1 INTRODUCTION ...ttt et e e e ettt e e s bt e e s bt e e s s ettt e e s sbaeeessabeeessabeeessbeneessrbeneas 6
1.1 DISTRIBUTION CONTENTS tittiiiiiiittttitieessiiittttttteesessiisbssteessssssssbsssessssssassssssssesssssssbssssesssssisssrssssssesss 6
O 1Y T - 1 L] TSR 6

A I Y 2 €] Y i I 1 TR 7
2.1 INTERRUPT STACK SET-UP ...cvitiiiiiiiiiiiiciiisti ettt 7
2.2 SATURATION BIT SEToUP ..ottt ittt ettt ettt ettt ettt e e s et e e s s bt e e e s ebb e e e s eabae e e s ba e e e s sabaeessabaeeessares 8

I A\l I = 01 1 T 10
R A N = {01l 1Y N o N 10

00 I R 01 (=T U oL = o] LSS 10
3.1.2 INErTUPL INSTAIIEE ...t ae e s sreenreenas 12
3.2 INTERRUPT PRIORITY AND ENABLINGcoiiiittttiiteietiiitittiee e e e ssitbttree s s e s s sitbbbbee s e e s s s sabbbas s e e s s ssanbbaeeeeeas 13
R T =Ny I =T LU= 5T 13
3.4 NESTED INTERRUPTS ... ittiteeeettttesettteesstttessettesessteseesateessasbesesestasessbaeessastesessabaseessaesessstbeessassesessanes 15

A STACK USAGE oot e e e e st e e e ettt e s st et e e s ebae e e s st beeesareeaessabenesstteeeias 17

B USEARGCH SETUP et ettt ettt ettt e ettt e e e ettt e e s et e e e e st e e e e sttt e e s sabeeessbbeeesaraaeesrares 18

B CHIP SUPPORT oottt ettt ettt e ettt e sttt e s st e e s ebat e e s aaba e e s sab et e s sabteeessabeeessbbeeesasaeeessares 21

T MEASUREMENT S .ottt ettt ettt e e st e e s ettt e e s et et e s s bt e e s sttt e e s sabeeessbbeeesaseeeesrares 22
% R Y/ =1V (] 2RO 22
A I 1 =1 N[O 2P 25

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZEcooooiiiiieee e 29
8.1 CASE 0: MINIMUM BUILD ..vtviiiiiiiiiiiiiiiee e e e s iitbtaie e e e e s s ebbbatesssesssbbbaaeassessssbabaesseesssssbbbaesseesssasssbbasseeeas 29
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORYuvuiiiiitiieeeiitieeesteeeessteeessaveessvenesssnnns 30
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY eeiiiiiicttteiiieeesiiiiteiieeeessssssseessesssssssssessessssssssssesssess 31
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPENDcoeevevveeeveeveeenenes 32
8.5 CASE4:+ TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBINceeiiiviieiiteiee s e eieeeseeee e 33
8.6 CASE 5.+ EVENTS / IMAILBOXES ...eeeeiiteieeeettieeseteee s setteeesettesessetatessenaeessassesssssaseessbesesssabeessaseeeessanes 34
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES)cutiiiiiiieiisiestesesie ettt st 35
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION)cvtteniiiinienisienieesie e 36
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...uvviiiiieiiiiiiiiiee e seiiirieee e e s eesinsveneeeens 37

Rev 1.11

Page 3

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

List of Figures

FIGURE 2-1 PROJECT FILE LIST woiiitiiiitii ittt ctte et e stee et e st e st e e ste e s ste e e stee s teeenbaesstaesnbaessbeeenbeesstneenbeessteeenseeesees 7
FIGURE 2-2 GUI SETOF OS_ ISR STACK wiiicuiiiiiiiiiiniie bbb s 8
FIGURE 2-3 GUI SET OF SATURATION BIT CONFIGURATIONceiiitiiieiitiieeeitteeeeetteeeeetteeesetreeeesteeesssseeesenseeeas 9
FIGURE 3-1 GUISETOF OS N INTERRUPTS ...cceitititiiiiiiiniitie ettt bbb 11
FIGURE 3-2 GUI SETOFOS N INTERRUPTS ..ot 12
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...vvveiiieeiitresieesreesieesiteesneesnreesnnee s 23
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGSvviiiieiiitresteeireesieesireesveesnreesnneesnns 25

Rev 1.11 Page 4

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

List of Tables

TABLE 1-1 DISTRIBUTION ..vtiiiteiitteiiteeiteeeiteesteesssesassseassesasesassessssssassessssssessesssssesssesesssessssesssesssssesssessseessnes 6
TABLE 2-1 0S ISR STACK . .iiiiiiitiiiiiie ittt bbb bbb bbb bbb bbb 7
TABLE 2-2 COMMAND LINE SETOF OS_ ISR STACK wcueuiiiiiiiiiiiitete ettt 8
TABLE 2-3 SATURATION BIT CONFIGURATIONcuvtiitieiiieeitteesteesstreesteeestseesseesssseesseeesssesssseesssesssssesssesssseessnes 9
TABLE 2-4 COMMAND LINE SET OF SATURATION BIT CONFIGURATION........cciuieitieeiireeitreesineessreesneessreessneessnes 9
TABLE 3-1 ABASSI CORTEXM3 CCS. S INTERRUPT TABLE SIZINGcociuiiiiiiiniiiiiieieiee e 10
TABLE 3-2 COMMAND LINE SET THE INTERRUPT TABLE SIZE.....uciiititiiteeiieeeiteesiteeesteessteeesseesstneenseesssneensessssnas 10
TABLE 3-3 OVERLOADING THE INTERRUPT TABLE SIZING FOR RABASST . Crveevreerreeeireesreesiseesseseseesisseesessssnes 11
TABLE 3-4 ATTACHING A FUNCTION TO AN INTERRUPTcttiiiiitiee e citiee e e ettt e e et e e s etveeeeetbae e e entreaessavaeeesntaeeeans 12
TABLE 3-5 INVALIDATING AN ISR HANDLER........utttiiiitieeeeittieeeeite e e setteeeeetteeeesteeeesetveeaesnbteeeeassesessabeeeeanbeeeens 13
TABLE 3-6 DISTRIBUTION INTERRUPT TABLE CODE-.......ceeiiiitiieeiitieeeiitieeeaattieeesiteeeesssreeessstaeesasssesesssseeesssseeeesns 13
TABLE 3-7 LM3S1968 UART O/ 1 FAST INTERRUPTSveiiitieiiteeiteesiteesiteesteesteesteesbeesraessbeesbaesstaeenseessnnas 14
TABLE 3-8 FAST INTERRUPT WITH DEDICATED STACK ..eiiiitiiieitieeeiitiee e e stteeeestaeeessnaeeessssaeessnsnesesssnessssssneeenns 15
TABLE 3-9 REMOVING INTERRUPT NESTING ...vveeiiutitieitteeeaiiteeeesteeessisseeesssssessssssesssssssssssssesesnssssesisssssssssseenns 16
TABLE 3-10 PROPAGATING INTERRUPT NESTINGccieituteeiiitreeeiinreesiuteeesssteeessseseessssesesssssssssnssssessssssssssnseenns 16
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS 11vviiiiiiiiitittiieeeesiiitbtsteesssssisssssesssssssssssssesssessinsssssssssesssnnns 17
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ...uttiiiitiieeeiiieeesite e e stteeeesttaeeesnteeeessnaeeesssssessssnesessnsesesssseseenns 19
TABLE 7-1 “C” CODE IMEMORY USAGEccoittiiiiititi ittt e ettt e e ettt e s ettee e e ettaeeesbaee e s eaaeeeaantaesesesseeessaresesanbreeeans 24
TABLE 7-2 ASSEMBLY CODE MEMORY USAGEccciiitiieeiitieeectee e e sitteeesettteeeeteeeesetaeeeastbteeestresessaresessnseeeeans 24
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCHuviiiiiiiii it ceitee e e ettt e e et e st e e e ettaeeeerreeessareeessnneeeeens 26
TABLE 7-4 MEASUREMENT WITHOUT BLOCKINGcotviieiitiiie et e cttee e s ettte e e etaeeesetteeeestbaeeesnreeessaresessnreeeeans 26
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ...vviiiiitiieeiitiieeectie e sitteeeeettteeeetaeeesetaeeesstbaeeesesseeesssresessnseeeenns 26
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKINGceceitviieeitieeesitieeeesiteeesssneeesssseessssssessssssssesssssssssssnseenns 27
TABLE 7-7 LATENCY MEASUREMENTS ...etiiiittiieiiitreeiitteeeasttreessseseesissesesssssesssssssessssssssssssesssnsssesssssssssssssenns 28
TABLE 8-1: CASE O BUILD OPTIONSccutteieeitteeeeiteeeestteeesatteeesssesassasseseaasssessssssesssssssesssssesssnssssssssesessssseeenns 29
TABLE 8-2: CASE L BUILD OPTIONSccutttieeittteeeitteeestteeesssteeesasasassasaeseasssseesssssessassssesssssesssnssssesssesesssssseenns 30
TABLE 8-3: CASE 2 BUILD OPTIONSccutttieeitteeeeitteeesitteeesasteeesssssassassessaasssessasssessassssesssssessssssssssssssesssssseeans 31
TABLE 8-4: CASE 3 BUILD OPTIONScciutttieiittteeeitereesitteeesasteeesssesassissesssasssesssssssesssssssesssssesssnssssssssssesasssseenns 32
TABLE 8-5: CASE 4 BUILD OPTIONSutvteeeittieeeeiteeeeeetteeeaetteeeeeisaesesesseseaassesessasesessessessasssseesssssesessssesesssseesesns 33
TABLE 8-6: CASE 5 BUILD OPTIONSuvvieeiittieeeiteeeeeetteeeaetteeeeaeseesesesseseaasseseesasesessassesessssseessassesesssesesssseesesns 34
TABLE 8-7: CASE 6 BUILD OPTIONSuvveeeiitteeeeeteeeeeeteeeeeetteeeeaisaesesesseseaastesesaaseseesassesesassseessassesssssresesssseeeesns 35
TABLE 8-8: CASE 7 BUILD OPTIONSutviieiitteeeeeteeeeeetteeeeetteeeeeisaesesesaeseaastesessaseseesassesesssssesssassessssssesesssseesesns 36
TABLE 8-9: CASE 8 BUILD OPTIONSuvviieiitteeeeeteeeeeiteeeeaesteeesaisaesesesseseaastesesaasesessessesesasseeessassesesssesesasseesesns 37

Rev 1.11 Page 5

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

1 Introduction

This document details the port of the Abassi RTOS to the ARM Cortex-M3 processor. The software suite
used for this specific port is the Code Composer Studio from Texas Instruments (abbreviated CCS); the
version used for the port and all tests is Version 5.1.1.00031.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:;

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS
Abassi.c RTOS “C” source file
Abassi_CORTEXM3_CCS.s RTOS assembly file for the ARM Cortex-M3 to use with

the Code Composer Studio

Demo 2 EKLM3S1968 CCS.c | Demo code that runs on the Luminary Micro LM3S1968
evaluation board

Demo_3_EKLM3S1968_CCS.c | Demo code that runs on the Luminary Micro LM3S1968
evaluation board

Demo_4_EKLM3S1968_CCS.c | Demo code that runs on the Luminary Micro LM3S1968
evaluation board

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

To optimize reaction time of the Abassi RTOS components, it was decided to require the processor to
always operate in privileged mode (which is the default mode for Cortex-M microcontrollers) and to
always use the main stack pointer (MSP). The start-up code supplied in the distribution fulfills these
constraints and one must be careful to not change these settings in the application.

The svcall interrupt (interrupt number -5) is not available as it is reserved for the OS, and the Abassi
RTOS uses it.

Rev 1.11 Page 6

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

2 Target Set-up

Very little is needed to configure the Code Composer Studio development environment to use the Abassi
RTOS in an application. All there is to do is to add the files Abassi.c and Abassi CORTEXM3 CCS.s in
the source files of the application project, and make sure the two configuration settings in the file
Abassi CORTEXM3 CCS.s (0S_ISR STACK as described in Section 2.1, and 0s HANDLE PSR Q as
described in Section 2.2) are set according to the needs of the application. As well, update the include file
path in the C/C++ compiler preprocessor options with the location of abassi.h. There is no need to
include a start-up file, as Abassi CORTEXM3 CCS.s is the start-up file.

File Edit View MNavigate Project Bun Scripts Window Help
4~ R < T I = -
L7 Project Explorer 3

[is}

1= Demo_1_CORTEXM3_CCS [Active - Release]
m Includes
[Abassi.c
& Im3s1968.cmd

[rain.c
Abassi_CORTEXM3_CCS.s

= Demo_1_CORTEXM3_CCS

Figure 2-1 Project File List

NOTE: By default, the Code Composer Studio runtime libraries are not multithread-safe, but Code
Composer Studio has a special hook to make the libraries multithread-safe. The required hooks
are applied in the file Abassi.h by attaching the Abassi internal mutex (G_Osmutex) during
runtime in 0Sstart ().

2.1 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an
application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate
extra room to the stack of every task in the application to handle the interrupt nesting. This feature is
controlled by the value set by the definition os 1sr_sTack, located around line 30 in the file
Abassi CORTEXM3 CCS.s. To disable this feature, set the definition of 0s ISR STACK to a value of
zero. To enable it, and specify the hybrid stack size, set the definition of os_1srR sTacCK to the desired
size in bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid
stack feature is enabled, and a stack size of 1024 bytes is allocated; this is shown in the following table:

Table 2-1 0s_ISR_STACK

.if ! ($$defined (0OS ISR STACK))
0S ISR STACK .equ 1024 ; If using a dedicated stack for the nested ISRs
.endif ; 0 if not used, otherwise size of stack in bytes

Rev 1.11 Page 7

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

Alternatively, it is possible to overload the 0s ISr_STACK value set in Abassi CORTEXM3 CCS.s by
using the assembler command line option —-asm_define and specifying the desired hybrid stack size as
shown in the following example, where the hybrid stack size is set to 512 bytes:

Table 2-2 Command line set of 0S_ISR_STACK

cl470 .. -asm _define=0S_ISR STACK=512

The hybrid stack size can also be set through the GUI, in the “Build / ARM Compiler / Advanced Options /
Predefined Symbols” menu, as shown in the following figure:

5
& Properties for Demo_1_CORTEXM3_CCS [B

type filter text Predefined Symbols & - - -

Resource

General
Build Configuration: |Release '] [Manage Configurations...]
ARM Compiler
Processor Options

Optimization
Debug Options Pre-define NAME (--define, -D) & = &8
Include Options
MISRA-C:2004
Advanced Options
Language Options
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assembler Options
E':;é":; SSE::IZ Undefine NAME (—undefine, -U) =)
Default File Extensions
Command Files
ARM Linker
Debug

Kl [3

"
@) Show advanced settings QK] [Cancel

Figure 2-2 GUI set of 0s_ISR_STACK

2.2 Saturation Bit Set-up

In the ARM Cortex-M3 status register, there is a sticky bit to indicate if an arithmetic saturation or
overflow has occurred during a DSP instruction; this is the Q flag in the status register (bit #27). By
default, this bit is not kept localized at the task level as it needs extra processing during a context switch to
do so; instead, it is propagated across all tasks. This choice was made because most applications do not
care about the value of this bit.

Rev 1.11 Page 8

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

If this bit is relevant for an application, even in a single task, then it must be kept locally in each task. To
keep the meaning of the saturation bit localized, the token 0s HANDLE PSR @ must be set to a non-zero
value; to disable it, it must be set to a zero value. This is located at around line 40 in the file
Abassi CORTEXM3 cCS.s. The distribution code disables the localization of the Q bit, setting the token
HANDLE PSR _Q to zero, as shown in the following table:

Table 2-3 Saturation Bit configuration

.1f ! ($$defined (OS_HANDLE PSR Q))
0OS HANDLE PSR Q .equ 0 ; If we keep the Q bit (saturation) on per tasks
.endif

Alternatively, it is possible to overload the 0s HANDLE PSR_Q value set in Abassi CORTEXM3 CCS.s by
using the assembler command line option -asm define and specifying the desired setting with the
following:

Table 2-4 Command line set of Saturation Bit configuration

cl470 .. -asm define=0S HANDLE PSR Q=0 ..

The saturation bit configuration can also be set through the GUI, in the “Build / ARM Compiler / Advanced
Options / Predefined Symbols” menu, as shown in the following figure:

5
& Properties for Demo_1_CORTEXM3_CCS B

type filter text Predefined Symbols [- -

Resource

General
Build Configuration: |Release '] ll‘v‘lanage Conflguratlons...]
ARM Cormnpiler
Processor Options

Optimization
Debug Options Pre-define NAME (--define, -D) £ 2= g
Include Options
MISRA-C:2004
Advanced Options
Language Options
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assembler Options
;'::ty:; iz:';z Undefine NAME (—undefine, -U) =)
Default File Extensions
Command Files
ARM Linker
Debug

T b

@) Show advanced settings [0K] [Cancel

Figure 2-3 GUI set of Saturation Bit configuration

Rev 1.11 Page 9

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt
context. For all interrupt sources (except interrupt numbers less than -1) the Abassi RTOS provides an
interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the
kernel uses it to know if a request occurs within an interrupt context or not. Second, using this dispatcher
reduces the code size, as all interrupts share the same code for the decision making of entering the kernel or
not at the end of the interrupt.

The distribution makes provision for 241 sources of interrupts, as specified by the token
OS N INTERRUPTS in the file aAbassi CortexM3 ccs.s, and the internal default value used by
Abassi.c. Eventhough the Nested Vectored Interrupt Controller (NVIC) peripheral supports a maximum
of 256 interrupts on the Cortex-M3, the first 15 entries of the interrupt vector table are hard mapped to
dedicated handlers (the interrupt number -1, which is attached to sysTick, is not hard mapped but is
handled by the ISR dispatcher).

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 256 interrupts, as they typically only handle between 64 and 128 sources of
interrupts. The interrupt table can be easily reduced to recover code space, and at the same time recover the
same amount of data memory. There are two files affected: in Abassi CortexM3 ccCsS.s, the ARM
interrupt table itself must be shrunk, and the value used in the file Abassi.c, in order to reduce the ISR
dispatcher table look-up. The interrupt table size is defined by the token 0s N INTERRUPTS in the file
Abassi CortexM3 cCS.s around line 35. For the value used by abassi.c, the default value can be
overloaded by defining the token 0s N _INTERRUPTS when compiling abassi.c . The distribution table
size is set to 241; that is the NVIC maximum of 256 minus the 15 hard mapped exceptions.

For example, the LM3S1968 device from Texas Instruments uses only the first 64 entries of the interrupt
table (48 external interrupts plus the standard 16 exceptions). The 256 entry table can therefore be reduced
to 64. The value to set in Abassi CortexM3 CCS.s files is49, which is the total of 64 entries minus
15 (there are 15 hard mapped exceptions). The change is shown in the following table:

Table 3-1 Abassi_CortexM3_CCS. s interrupt table sizing

.if ! ($$defined (OS_N INTERRUPTS)) ; # of entries in the interupt table mapped to
0S N _INTERRUPTS .equ 49 ; ISRdispatch ()
.endif

Alternatively, it is possible to overload the 0s_ N INTERRUPTS value set in Abassi CORTEXM3 CCS.s by
using the compiler command line option -asm define and specifying the desired setting with the
following:

Table 3-2 Command line set the interrupt table size

C1470 .. -—asm define=0S N INTERRUPTS=49 ..

Rev 1.11 Page 10

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

The overloading of the default interrupt vector look-up table used by abassi.c is done by using the
compiler command line option -p and specifying the desired setting with the following:

Table 3-3 Overloading the interrupt table sizing for Abassi.c

c1470 .. -DOS_N INTERRUPTS=49 ..

The interrupt table size used by Abassi CORTEXM3 CCS.s can also be set through the GUI, in the “Build
/ ARM Compiler / Advanced Options / Assembler Options” menu, as shown in the following figure:

&% Properties for Demo_1_CORTEXM3_CCS E [|
type filter text Assembler Options o g
Resource
General
Build Configuration: [RE|EESE '] ll‘v‘lanage Configurations...
ARM Compiler

Processor Options

Optimization D Keep the generated assembly language (.asm) file (--keep_asm, -k}

Debug Options

Include Options Source interlist -
MISRA-C.2004 [7] Generate listing file (--asm_listing, -al)

Advanced Options = Keep lacal symbols in output file (--output_all_syms, -as)

Language Options || Do not generate .clink for .const sections (--no_censt_clink)
Parser Preprocessing Opti
Predefined Symbols Simulate source ".copy filename' (--copy_file, -ahc) &)
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assernbler Options Undefine assembly symbol MAME (--asm_undefine, -au) £
File Type Specifier
Directory Specifier
Default File Extensions
Command Files

ARM Linker
Debug

Il Symbol names are not case-significant (--syms_ignore_case, -ac)

7] Use unified assembly language (--ual)

Simulate source “include filename' (--include_file, -ahi) a

Pre-define assembly symbol NAME (--asm_define, -ad) & & &

05_N_INTERRUPTS=49

[] Generate first-level assembly include file list (--asm_includes, -api)

|| Generate cross reference file (--cross_reference, -ax)

Generate assembly dependency information (--asm_dependency, -apd)

[oc J[canca |

e b

M .
@) Show advanced settings

Figure 3-1 GUI set of 0S_N_INTERRUPTS

Rev 1.11 Page 11

Abassi RTOS

Port — ARM Cortex-M3 — CCS

2012.05.21

The interrupt table look-up size used by abassi.c can also be overloaded through the GUI, in the “Build /
ARM Compiler / Advance Options / Predefined Symbols” menu, as shown in the following figure:

Debug Options

Include Options

MISRA-C:2004

Advanced Options
Language Options
Parser Preprocessing Opti
Predefined Symbols
Diagnostic Options
Runtime Model Options
Advanced Optimizations
Entry/Exit Hook Options
Library Function Assumpt
Assembler Options
File Type Specifier
Directory Specifier
Default File Extensions
Coemmand Files

ARM Linker
Debug

1 . +

"
@) Show advanced settings

<% Properties for Demo_1_CORTEXM3_CCS [S ||
type filter text Predefined Symbols (=T T -
Resource
General
Build Configuration: |Release ‘][ManageConfigurations..‘]
ARM Compiler
Processor Options
Optimization

Pre-define MAME (--define, -0

Q5_N_INTERRUPTS=49

Undefine NAME (--undefine, -U)

& £ &

&

| [cancel

Figure 3-2 GUI set of 0s_N_INTERRUPTS

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS
component 0SisrInstall () to specify the interrupt number and the function to be attached to that
interrupt number. For example, Table 3-4 shows the code required to attach the sysTick interrupt to the

RTOS timer tick handler (TtMtick)

Table 3-4 Attaching a Function to an Interrupt

#include “Abassi.h”

OSstart () ;

OSisrInstall (-1, &TIMtick);

.. /* More ISR setup */

0Seint (1) ;

/* Set-up the count reload and enable SysTick interrupt */

/* Global enable of all interrupts */

NOTE: o0sisrInstall () uses the interrupt number, NOT the interrupt vector number.

Rev 1.11

Page 12

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

At start-up, once osstart () has been called, all 0s_ N INTERRUPTS interrupt handler functions are set to
a “do nothing” function, named o0sinvalidIsr(). If an interrupt function is attached to an interrupt
number using the osisriInstall () component before calling osstart (), this attachment will be
removed by 0Sstart (), S0 0OSisrInstall () should never be used before osstart () hasran. When an
interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the
handling function can be set back t0 0SinvalidIsr (). Thisis shown in Table 3-5:

Table 3-5 Invalidating an ISR handler

#include “Abassi.h”

/* Disable the interrupt source */
OSisrInstall (Number, &0SinvalidISR);

When an application needs to disable/enable the interrupts, the RTOS supplied functions osdint () and
0Seint () should be used.

The Nested Vectored Interrupt Controller (NVIC) on the Cortex-M3 does not clear the interrupt generated
by a peripheral; neither does the RTOS. If the generated interrupt is a pulse (as for the sysTick interrupt),
there is nothing to do to clear the interrupt request. However, if the generated interrupt is a level interrupt,
the peripheral generating the interrupt must be informed to remove the interrupt request. This operation
must be performed in the interrupt handler, otherwise the interrupt will be re-entered over and over.

3.2 Interrupt Priority and Enabling

To properly configure interrupts, the interrupt priority must be set, and the peripheral configured to
generate interrupts and enable them. There is no software provided to perform these operations, as this
functionality is already available. First, Code Composer Studio supports the Cortex Microcontroller
Software Interface Standard (CMSIS), which provides everything required to program the processor
peripherals. Second, most chip manufacturers provide code to configure the specifics on their devices.

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component
from Abassi, and as the name says, is desired to operate as fast as possible. . To set-up a fast interrupt, all
there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector
table used by the Cortex-M3 processor. The area of the interrupt vector table to modify is located in the
file Abassi CORTEXM3 ccs.s around line 70. For example, on a Texas Instruments LM3S1968 device,
UART #0 is attached to interrupt number 5 (interrupt vector number 21) and the UART #1 is attached to
the interrupt number 6 (interrupt vector number 22). The code to modify is located in the macro loop that
initializes the interrupt table to set the ISR dispatcher as the default interrupt handler. All there is to do is
add checks on the token holding the interrupt number, such that, when the interrupt number value matches
the desired interrupt number, the appropriate address gets inserted in the table instead of the address of
ISRdispatch (). The original macro loop code and modified one are shown in the following two tables:

Table 3-6 Distribution interrupt table code

.eval -1, INT NMB

.loop OS N INTERRUPTS ; Map all external interrupts to ISRdispatch ()
.field ISRdispatch, 32
.eval INT NMB+1, INT NMB

.endloop

Rev 1.11 Page 13

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

Attaching a fast interrupt handler to the UART #0 and another one to UART #1, assuming the names of the
interrupt functions to attach are respectively UARTO IRQhandler () and UART1 IRQhandler (), iS
shown in the following table:

Table 3-7 LM3S1968 UART 0/ 1 Fast Interrupts

.global USARTO_IRQhandler
.global USART1 IRQhandler

.eval -1, INT NMB

.loop OS N INTERRUPTS ; Map all external interrupts to ISRdispatch ()
.if INT NMB == ; When is interrupt # 5, set UART #0 handler
.field UARTO_IRQhandler, 32
.elseif INT NMB == ; When is interrupt # 6, set UART #1 handler
.field UART1 IRQhandler, 32
.else ; All others interrupt # set to ISRdispatch()
.field ISRdispatch, 32
.endif
.eval INT NMB+1, INT NMB
.endloop

It is important to add the .global statement, otherwise there will be an error during the assembly of the
file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

Rev 1.11 Page 14

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.
This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To
make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the
call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in
the regular interrupt dispatcher. Reusing the example of the UART #0 on the LM3S1968 device, this
would look something like:

Table 3-8 Fast Interrupt with Dedicated Stack

.if INT NMB == ; When is interrupt # 5, set UART #0 handler
.field UARTOprehandler, 32

.text
.align 4
. thumb

.global UARTOhandler

UARTOpreHandler:
cpsid I ; Disable ISR to protect against nesting
mov r0, sp ; Memo current stack pointer
ldr sp, S$SUARTO_ stack ; Stack dedicated to this fast interrupt
cpsie I ; The stack is now hybrid, nesting safe
push {r0, 1r} ; Preserve original sp & EXC RETURN
bl UARTOhandler ; Enter the interrupt handler
pop {r0, 1r} ; Recover original sp & EXC_RETURN
mov sp, r0 ; Recover pre-isr stack
bx 1r ; Exit from the interrupt

$SUARTO_stack:
.field UARTO_s base+UARTO_stack size, 32

.bss UARTO_s_base, UARTO_stack size, 8 ; Room for the fast interrupt stack

The same code, with unique labels, must be repeated for each of the fast interrupts.

3.4 Nested Interrupts

The interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will interrupt
the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 8 levels,
where level 0 is the highest and 7 is the lowest. This implies that the RTOS build option
OS_NESTED INTS must be set to a non-zero value. The exception to this is in an application where all
enabled interrupts handled by the RTOS ISR dispatcher are set, without exception, to the same priority;
then interrupt nesting will not occur. In that case, and only that case, can the build option
0S_NESTED INTS be set to zero. As this latter case is quite unlikely, the build option 0S_NESTED INTS
is always overloaded when compiling the RTOS for the ARM Cortex-M3. If the latter condition is
guaranteed, the overloading located after the pre-processor directive can be modified. The code affected in
Abassi.h is shown in Table 3-9 below and the line to modify is the one with #define
OX_NESTED INTS 1:

Rev 1.11 Page 15

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

Table 3-9 Removing interrupt nesting

#elif defined(TI COMPILER VERSION) && defined(TI TMS470 V7M3_)
#define OX NESTED INTS 0 /* The ARM has 8 nested (NIVC) interrupt levels */

Or if the build option 0s NESTED INTS is desired to be propagated:

Table 3-10 Propagating interrupt nesting

#elif defined(TI COMPILER VERSION) && defined(TI TMS470 VM3)
#define OX NESTED INTS OS NESTED INTS

The Abassi RTOS kernel never disables interrupts, but there is a few very small regions within the interrupt
dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20
instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS
component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only
once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at
the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already
active. This means that only the interrupt handler function operates in an interrupt context, and only the
time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the
interrupt controller.

Rev 1.11 Page 16

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,
the stack holds the register context that was preserved when the task got blocked or preempted. Also, when
an interrupt occurs, the register context of the running task must be preserved in order for the operations
performed during the interrupt to not corrupt the contents of the registers used by the task when it got
interrupted. For the Cortex-M3, the context save contents of a blocked or pre-empted task is different from
the one used in an interrupt. The following table lists the number of bytes required by each type of context
save operation:

Table 4-1 Context Save Stack Requirements
Description Context save

40 bytes

Interrupt dispatcher context save (0S_ISR_STACK == 0) | 40 bytes

Interrupt dispatcher context save (0s_ISR STACK != 0) | 48 bytes

The numbers for the interrupt dispatcher context save include the 32 bytes the processor pushes on the
stack when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is
simply that every task in the application needs at least the area to preserve the task context when it is
preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in
the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So if N
levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR
context save on each task stack, plus any added stack used by all the interrupt handler functions. Finally,
add to all this the stack required by the code implementing the task operation.

NOTE: The ARM Cortex M3 processor needs alignment on 8 byes for some instructions accessing
memory. When stack memory is allocated, Abassi guarantees the alignment. This said, when
sizing 0S_STATIC STACK Or 0S ALLOC SIZE, make sure to take in account that all allocation
performed through these memory pools are by block size multiple of 8 bytes.

If the hybrid interrupt stack (see Section 2.1) is enabled, then the above description changes: it is only
necessary to reserve room on task stacks for a single interrupt context save (this excludes the interrupt
function handler stack requirements) and not the worst-case nesting. With the hybrid stack enabled, the
second, third, and so on interrupts use the stack dedicated to the interrupts. The hybrid stack is enabled
when the 0s_ISrR STACK token in the file Abassi CORTEXM3 CCS.s is set to a non-zero value (see
Section 2.1).

Rev 1.11 Page 17

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

5 Search Set-up

The Abassi RTOS build option os_searcH rFasT offers three different algorithms to quickly determine
the next running task upon task blocking. The following table shows the measurements obtained for the
number of CPU cycles required when a task at priority O is blocked, and the next running task is at the
specified priority. The number of cycles includes everything, not just the search cycle count. The number
of cycles was measured using the sysTick peripheral, which decrements the counter once every CPU
cycle. The second column is when 0S_SEARCH FAST is set to zero, meaning a simple array traversing.
The third column, labeled Look-up, is when 0s SEARCH FAST is set to 1, which uses an 8 bit look-up
table. Finally, the last column is when os_SEARCH FAST is set to 5 (CCS/Cortex-M3 int are 32 bits, so
275), meaning a 32 bit look-up table, further searched through successive approximation. The compiler
optimization for this measurement was set to High optimization (-03) / Optimize for speed (-m£5) without
debugging information. The RTOS build options were set to the minimum feature set, except for option
0S_PRIO_CHANGE set to non-zero. The presence of this extra feature provokes a small mismatch between
the result for a difference of priority of 1, with 0s_SEARCH FAST set to zero, and the latency results in
Section 7.2.

When the build option os_SEARCH ALGO is set to a negative value, indicating to use a 2-dimensional
linked list search technique instead of the search array, the number of CPU cycles is constant at 210 cycles.

Rev 1.11 Page 18

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation
1 232 251 291
2 238 257 291
3 244 263 291
4 250 269 291
5 256 275 291
6 262 281 291
7 268 287 291
8 274 254 291
9 280 258 291
10 286 264 291
11 292 270 291
12 298 276 291
13 304 282 291
14 310 288 291
15 316 294 291
16 322 262 291
17 328 266 291
18 334 274 291
19 340 278 291
20 346 284 291
21 352 290 291
22 358 296 291
23 364 302 291
24 370 270 291

When 0s_SEARCH FAST is set to O, each extra priority level to traverse requires exactly 6 CPU cycles.
When 0s_SEARCH FAST is Set to 1, each extra priority level to traverse requires exactly 6 CPU cycles,
except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.
Overall, setting 0s_sSeEaRCH FAST to 1 adds between a few cycles of CPU for the search, compared to
setting 0S_SEARCH FAST to zero. But when the next ready to run priority is less than 8, 16, 24, ... then
there is around 7 cycles needed, but without the 8 times 6 cycle accumulation. Finally, the third option,
when 0S_SEARCH FAST is set to 5, delivers a perfectly constant CPU usage, as the algorithm utilizes a
successive approximation search technique (when the delta is 32 or more, the CPU cycle count is 296, for
64 or more, it is 304).

Rev 1.11 Page 19

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

The first observation, when looking at this table, is that the third option, when 0s_SEARCH FAST is set to
5, is mostly less CPU efficient than the second option, the one when 0s_SEARCH FasT issetto 1. So, the
build option 0os searcH FAST should never be set to 5, as it is the least efficient method. The other
observation is that the first option (0s_SEARCH FAST set to 0) delivers better CPU performance than the
third option (0s_SEARCH FAST set to 5) when the search spans less than 7 to 8 priority levels. So, if an
application has tasks spanning less than 7 to 8 priority levels, the build option os_searca FasT should be
set to O; for all other cases, the build option os_searcH FaST should be set to 1.

Setting the build option 0S_SEARCH ALGO to a non-negative value minimizes the time needed to change
the state of a task from blocked to ready to run, and not the time needed to find the next running task upon
blocking/suspending of the running task. If the application needs are such that the critical real-time
requirement is to get the next running task up and running as fast as possible, then set the build option
0S_SEARCH_ALGO to a negative value.

Rev 1.11 Page 20

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

6 Chip Support

No chip support is provided with the distribution code because Code Composer Studio for the ARM
supports the Cortex Microcontroller Software Interface Standard (CMSIS). Therefore, all peripherals on
the Cortex-M3 can be accessed through the CMSIS. Also, most device manufacturers provide code to
configure the peripherals on their devices.

Rev 1.11 Page 21

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the
RTOS is used on the ARM Cortex-M3 and compiled with Code Composer Studio. The CPU cycles are
exactly the CPU clock cycles, as the processor typically executes one instruction at every clock transition

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the
smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the
features. For both cases, names are not part of the build. This feature was removed from the metrics
because it is highly probable that shipping products utilizing this RTOS will not include the naming of
descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of
components runtime safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for
the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One
should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

Rev 1.11 Page 22

Abassi RTOS

Port — ARM Cortex-M3 — CCS

2012.05.21

The code memory required by the RTOS includes the “C” code and assembly language code used by the
RTOS. The code optimization settings of the compiler that were used for the memory measurements are;

1. Debugging model:

2. Optimization level:

3. Optimize for speed:

«'« Properties for Demo_1_CORTEXM3_CCS

General
Build

TM5470 Compiler
Basic Options
Assembler Options
Command Files
Default File Extensions
Diagnostic Options
Directory Specifier
Entry/Exit Hook Options
File Type Specifier
Include Options
Language Options
Library Function Assumption
MISRA-C:2004: MISRA Rules
Optimizations
Parser Preprocessing Options
Predefined Symbols
Runtime Model Options
Symbelic Debug Options

TMS470 Linker

4 m | }

) -
@) Show advanced settings

Basic Options

Off

32

0
[N
oo - -

Configuration: |Release [Active]

Target processor version (--silicon_version, -mv) l?ME

"] Enable 16 bit code (--thumb_state, -mt)

Debugging model
Optimization level (--opt_level, -0)

Optimize for speed (--opt_for_speed, -mf)

See 'General' for changing TM5470 Compiler version and device settings

Lok I

Cancel

Figure 7-1 Memory Measurement Code Optimization Settings

! Debugging is turned off as it restricts the optimizer.

The highest optimization level on Code Composer is 4, but level 4 adds linker optimization over what
optimization level 3 does. The linker optimization is not used for the memory measurements as it converts
small function into in-line operations, removing these functions from the memory map, skewing the

memory sizing measurements.

Rev 1.11

Page 23

Abassi RTOS

Port — ARM Cortex-M3 — CCS

2012.05.21

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 750 bytes
+ Runtime service creation / static memory < 950 bytes
+ Multiple tasks at same priority < 1025 bytes
+ Runtime priority change < 1475 bytes
+ Mutex priority inheritance

+ FCFS

+ Task suspension

+ Timer & timeout < 1950 bytes
+ Timer call back

+ Round robin

+ Events < 2600 bytes
+ Mailbox

Full Feature Build (no names) < 3100 bytes
Full Feature Build (no name / no runtime creation) < 2750 bytes
Full Feature Build (no names / no runtime creation) < 3100 bytes

+ Timer services module

Table 7-2 Assembly Code Memory Usage

Description Size

Assembly code size 188 bytes
Vector table (per interrupt handler entry) +4 bytes
Hybrid Stack Enabled +12 bytes
Saturation Bit Enabled +24 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its
own data memory to operate, and second, most of the services offered by the RTOS require data memory
for each instance of the service. As the build options affect either the kernel memory needs or the service
descriptors (or both), an interactive calculator has been made available on the Code Time Technologies

website.

Rev 1.11

Page 24

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

7.2 Latency

Latency of operations has been measured on a Texas Instrument Stellaris EKK-LM3S1968 Evaluation
board populated with a 50 MHz LM3S1968 device. All measurements have been performed on the real
platform. This means the interrupt latency measurements had to be instrumented to read the SysTick
counter value. This instrumentation can add up to 5 or 6 cycles to the measurements. The code
optimization settings that were used for the latency measurements are:

. . 3
1. Debugging model: Off
2. Optimization level: 3
3. Optimize for speed: 5
«"« Properties for Demo_1_ CORTEXM3_CCS EE |
Basic Options [T -
General
Build
TMS470 Compiler Configuration: |Release [Active] '] [Manage Configurations...]
Basic Options
Assembler Options
Command Files
Default File Extensions Target processor version (--silicon_version, -mv) l?ME vl
Diagnostic Options "] Enable 16 bit code (--thumb_state, -mt)
Directory Specifier Debugging model l 'l
Entry/Exit Hook Options
File Type Specifier Optimization level (--opt_level, -0) l3 vl
Include Opti
L:;;u:gepolpotrilzns Optimize for speed (--opt_for_speed, -mf) IS 'l
Library Function Assumption
MISRA-C:2004: MISRA Rules
Optimizations
Parser Preprocessing Options
Predefined Symbols
Runtime Model Options
Symbelic Debug Options
TMS470 Linker
< m 1y See 'General' for changing TM5470 Compiler version and device settings
@:l Show advanced settings l QK] [Cancel

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very
good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three
tasks were involved:

1. Adam & Eve set to a priority value of 0;
2. Alow priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

3 Debugging is turned off as it restricts the optimizer.

Rev 1.11 Page 25

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a
mailbox. The first 2 latency measurements use the component in a manner where there is no task
switching. The third measurements involve a high priority task getting blocked by the component. The
fourth measurements are about the opposite: a low priority task getting pre-empted because the component
unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,
through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component
is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

Start CPU cycle count
SEMpost (..); or EVTset(..); or MBXput();
Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right
before the component is used until it is back from the component. For these measurement there is no task
switching. This means:

Table 7-4 Measurement without Blocking

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the
component triggers the unblocking of a higher priority task until the latter is back from the component used
that blocked the task. This means:

Table 7-5 Measurement with Task Switch

main ()

{

SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

}

TaskPriol ()
{

Start CPU cycle count
SEMpost (..) ; or EVTset(..); or MBXput(..);

Rev 1.11 Page 26

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

The forth set of measurements counts the number of CPU cycles elapsed starting right before the
component blocks on a high priority task until the next ready to run task is back from the component it was
blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

main ()

{

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);

}

TaskPriol ()
{

SEMpost (..) ; or EVTset(..); or MBXput(..);
Stop CPU cycle count

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt
using the component, until the task that was blocked becomes the running task and is back from the
component used that blocked the task. The interrupt latency measurement includes everything involved in
the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the
interrupt code. The interrupt function, attached with 0sisrInstall (), is simply a two line function that
uses the appropriate RTOS component followed by a return.

Table 7-7 lists the results obtained, where the cycle count is measured using the sysTick peripheral on the
Cortex-M3. This timer decrements its counter by 1 at every CPU cycle. As was the case for the memory
measurements, these numbers were obtained with a beta release of the RTOS. It is possible the released
version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR
function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt
stack and branch to the address specified in the interrupt vector table. But for this measurement, the
LM3S1968 Timer 1 is used to trigger the interrupt and measure the elapsed time. The latency measurement
includes the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used
between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in
the 0SisrInstall(). The interrupt overhead when entering the kernel is calculated using the results
from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU
cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization
component.

The hybrid interrupt stack feature was not enabled, neither was the saturation bit, in any of these tests.

Rev 1.11 Page 27

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21

In the following table, the latency numbers between parentheses are the measurements when the build
option 0s_SEARCH ALGO is set to a negative value. The regular number is the latency measurements when
the build option 0s_SEARCH ALGO is set to 0.

Table 7-7 Latency Measurements

Description Minimal Features Full Features
Semaphore posting no task switch 125 (115) 173 (171)
Semaphore waiting no blocking 135 (123) 185 (183)
Semaphore posting with task switch 186 (200) 288 (299)
Semaphore waiting with blocking 209 (192) 325 (307)
Semaphore posting in ISR with task switch 381 (384) 487 (494)
Event setting no task switch n/a 170 (168)
Event getting no blocking n/a 196 (194)
Event setting with task switch n/a 293 (304)
Event getting with blocking n/a 336 (318)
Event setting in ISR with task switch n/a 493 (500)
Mailbox writing no task switch n/a 216 (215)
Mailbox reading no blocking n/a 221 (219)
Mailbox writing with task switch n/a 340 (352)
Mailbox reading with blocking n/a 371 (353)
Mailbox writing in ISR with task switch n/a 546 (554)
Interrupt Latency 29 29
Interrupt overhead entering the kernel 195 (184) 199 (195)
Interrupt overhead NOT entering the kernel 50 50

Context switch 33 34

Rev 1.11 Page 28

Abassi RTOS

Port —

ARM Cortex-M3 — CCS 2012.05.21

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build
Table 8-1: Case 0 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE_RUN_MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

O O O O OO O OO OO OO O OO ODODONOOODOONOO OO O oo

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

When !=0, RTOS supplied OSalloc */
When 0: pre-emptive, when non-zero: cooperative */
If event flags are supported */
Allow the use of 1lst come lst serve semaphore */
If IdleTask supplied & if so, stack size */
Type of logging to use */
If mailboxes are used */
Maximum number of requests in ISRs */
This test validates this */
To enable protection against priority inversion */
!= 0 when named Tasks / Semaphores / Mailboxes */
If operating with nested interrupts */
If a task priority can be changed at run time */
Max priority, Idle = OS_PRIO MIN, AdameEve = 0 */
Support multiple tasks with the same priority */
Use round-robin, value specifies period in uS */
If create Task / Semaphore / Mailbox at run time */
If using a fast search */
Priority threshold for starving protection */
Maximum Timer Tick for starving protection */
Maximum time on hold for starving protection */
when OS_STATIC_MBOX != 0, # of buffer element */
If !=0 how many mailboxes */
If named mailboxes/semaphore/task, size in char */
If !=0 how many semaphores and mutexes */
if =0 number of bytes for all stacks */
If !'=0 how many tasks (excluding A&E and Idle) */
If a task can suspend another one */
!'=0 enables blocking timeout */
!'=0 gives the timer callback period */
!'=0 includes the timer services module */
!'=0 enables timer & specifies the period in uS */
If tasks have arguments */

Rev 1.11

Page 29

Abassi RTOS

Port —

ARM Cortex-M3 — CCS 2012.05.21

8.2 Case 1: + Runtime service creation / static memory
Table 8-2: Case 1 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE_RUN_MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

O O O O OO Uk U000 O OO0 OO OONOOOOONOOOOOO OO

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

When !=0, RTOS supplied OSalloc

*/

When 0: pre-emptive, when non-zero: cooperative */

If event flags are supported

Allow the use of 1lst come lst serve semaphore
If IdleTask supplied & if so, stack size

Type of logging to use

If mailboxes are used

Maximum number of requests in ISRs

This test validates this

*/
*/
*/
*/
*/
*/
*/

To enable protection against priority inversion */

!= 0 when named Tasks / Semaphores / Mailboxes
If operating with nested interrupts

If a task priority can be changed at run time
Max priority, Idle = OS PRIO MIN, AdameEve = 0
Support multiple tasks with the same priority
Use round-robin, value specifies period in uS

*/
*/
*/
*/
*/
*/

If create Task / Semaphore / Mailbox at run time */

If using a fast search

Priority threshold for starving protection
Maximum Timer Tick for starving protection
Maximum time on hold for starving protection
when OS_STATIC_MBOX != 0, # of buffer element
If !'=0 how many mailboxes

*/
*/
*/
*/
*/
*/

If named mailboxes/semaphore/task, size in char */

If !=0 how many semaphores and mutexes

if !'=0 number of bytes for all stacks

If !'=0 how many tasks (excluding A&E and Idle)
If a task can suspend another one

!'=0 enables blocking timeout

!'=0 gives the timer callback period

!'=0 includes the timer services module

!=0 enables timer & specifies the period in uS
If tasks have arguments

*/
*/
*/
*/
*/
*/
*/
*/
*/

Rev 1.11

Page 30

Abassi RTOS

Port —

ARM Cortex-M3 — CCS 2012.05.21

8.3 Case 2: + Multiple tasks at same priority
Table 8-3: Case 2 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE_RUN_MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

O O O O OO Uk U000 O OO0 O0OO0OHFF ORFENOOOOOWOOOOOoOOoOo

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

When !=0, RTOS supplied OSalloc

*/

When 0: pre-emptive, when non-zero: cooperative */

If event flags are supported

Allow the use of 1lst come lst serve semaphore
If IdleTask supplied & if so, stack size

Type of logging to use

If mailboxes are used

Maximum number of requests in ISRs

This test validates this

*/
*/
*/
*/
*/
*/
*/

To enable protection against priority inversion */

!= 0 when named Tasks / Semaphores / Mailboxes */
If operating with nested interrupts */
If a task priority can be changed at run time */
Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
Support multiple tasks with the same priority */
Use round-robin, value specifies period in uS */
If create Task / Semaphore / Mailbox at run time */
If using a fast search */
Priority threshold for starving protection */
Maximum Timer Tick for starving protection */
Maximum time on hold for starving protection */
when OS_STATIC_MBOX != 0, # of buffer element */
If !=0 how many mailboxes */
If named mailboxes/semaphore/task, size in char */
If !=0 how many semaphores and mutexes */
if !=0 number of bytes for all stacks */
If !'=0 how many tasks (excluding A&E and Idle) */
If a task can suspend another one */
!'=0 enables blocking timeout */
!'=0 gives the timer callback period */
!'=0 includes the timer services module */
!'=0 enables timer & specifies the period in uS */
If tasks have arguments */

Rev 1.11

Page 31

Abassi RTOS

Port —

ARM Cortex-M3 — CCS 2012.05.21

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend
Table 8-4: Case 3 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE_RUN_MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

O OO OOk Uk Ul OO0 OO0 O0OO0OHFHFORFRPNEF OORF O WOOOoORrR OoOOoOo

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

When !=0, RTOS supplied OSalloc

*/

When 0: pre-emptive, when non-zero: cooperative */

If event flags are supported

Allow the use of 1lst come lst serve semaphore
If IdleTask supplied & if so, stack size

Type of logging to use

If mailboxes are used

Maximum number of requests in ISRs

This test validates this

*/
*/
*/
*/
*/
*/
*/

To enable protection against priority inversion */

!= 0 when named Tasks / Semaphores / Mailboxes */
If operating with nested interrupts */
If a task priority can be changed at run time */
Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
Support multiple tasks with the same priority */
Use round-robin, value specifies period in uS */
If create Task / Semaphore / Mailbox at run time */
If using a fast search */
Priority threshold for starving protection */
Maximum Timer Tick for starving protection */
Maximum time on hold for starving protection */
when OS_STATIC_MBOX != 0, # of buffer element */
If !=0 how many mailboxes */
If named mailboxes/semaphore/task, size in char */
If !=0 how many semaphores and mutexes */
if !=0 number of bytes for all stacks */
If !'=0 how many tasks (excluding A&E and Idle) */
If a task can suspend another one */
!'=0 enables blocking timeout */
!'=0 gives the timer callback period */
!'=0 includes the timer services module */
!'=0 enables timer & specifies the period in uS */
If tasks have arguments */

Rev 1.11

Page 32

Abassi RTOS

Port —

ARM Cortex-M3 — CCS 2012.05.21

8.5 Case 4: + Timer & timeout / Timer call back / Round robin
Table 8-5: Case 4 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE_RUN_MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

/*
/*
/*
/*
/*
/*
/*
2 /*
/*
/*
/*
/*
/*
/*
/*
00000/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
28 /*
/*
/*
/*
0 /*
/*
0000 /*
/*

o

CUORRPRPRURUIOOOOO0OOORRERENRL OORFROWOOOROOO

When !=0, RTOS supplied OSalloc

*/

When 0: pre-emptive, when non-zero: cooperative */

If event flags are supported

Allow the use of 1lst come lst serve semaphore
If IdleTask supplied & if so, stack size

Type of logging to use

If mailboxes are used

Maximum number of requests in ISRs

This test validates this

*/
*/
*/
*/
*/
*/
*/

To enable protection against priority inversion */

!= 0 when named Tasks / Semaphores / Mailboxes */
If operating with nested interrupts */
If a task priority can be changed at run time */
Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
Support multiple tasks with the same priority */
Use round-robin, value specifies period in uS */
If create Task / Semaphore / Mailbox at run time */
If using a fast search */
Priority threshold for starving protection */
Maximum Timer Tick for starving protection */
Maximum time on hold for starving protection */
when OS_STATIC_MBOX != 0, # of buffer element */
If !=0 how many mailboxes */
If named mailboxes/semaphore/task, size in char */
If !=0 how many semaphores and mutexes */
if !=0 number of bytes for all stacks */
If !'=0 how many tasks (excluding A&E and Idle) */
If a task can suspend another one */
!'=0 enables blocking timeout */
!'=0 gives the timer callback period */
!'=0 includes the timer services module */
!'=0 enables timer & specifies the period in uS */
If tasks have arguments */

Rev 1.11

Page 33

Abassi RTOS

Port —

ARM Cortex-M3 — CCS 2012.05.21

8.6 Case 5: + Events / Mailboxes
Table 8-6: Case 5 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE_RUN_MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

/*
/*
/*
/*
/*
/*
/*
2 /*
/*
/*
/*
/*
/*
/*
/*
00000/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
28 /*
/*
/*
/*
0 /*
/*
0000 /*
/*

o

CUORRPRPRURFRUIOOOOOOOREREPNRL OO OWOOOROOO

When !=0, RTOS supplied 0OSalloc

When 0: pre-emptive, when non-zero: cooperative */

If event flags are supported

Allow the use of 1lst come lst serve semaphore
If IdleTask supplied & if so, stack size

Type of logging to use

If mailboxes are used

Maximum number of requests in ISRs

This test validates this

To enable protection against priority inversion */

!= 0 when named Tasks / Semaphores / Mailboxes */
If operating with nested interrupts */
If a task priority can be changed at run time */
Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
Support multiple tasks with the same priority */
Use round-robin, value specifies period in uS */
If create Task / Semaphore / Mailbox at run time */
If using a fast search */
Priority threshold for starving protection */
Maximum Timer Tick for starving protection */
Maximum time on hold for starving protection */
when OS_STATIC_MBOX != 0, # of buffer element */
If !=0 how many mailboxes */
If named mailboxes/semaphore/task, size in char */
If !=0 how many semaphores and mutexes */
if !=0 number of bytes for all stacks */
If !'=0 how many tasks (excluding A&E and Idle) */
If a task can suspend another one */
!'=0 enables blocking timeout */
!'=0 gives the timer callback period */
!'=0 includes the timer services module */
!=0 enables timer & specifies the period in uS */
If tasks have arguments */

*/

*/
*/
*/
*/
*/
*/
*/

Rev 1.11

Page 34

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21
8.7 Case 6: Full feature Build (no names)
Table 8-7: Case 6 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 100 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !'=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.11

Page 35

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21
8.8 Case 7: Full feature Build (no names / no runtime creation)
Table 8-8: Case 7 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.11

Page 36

Abassi RTOS Port — ARM Cortex-M3 — CCS 2012.05.21
8.9 Case 8: Full build adding the optional timer services
Table 8-9: Case 8 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 100 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !'=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 1 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.11

Page 37

