CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document
ARM Cortex-M4 — Atollic

Copyright Information

This document is copyright Code Time Technologies Inc. ©2012. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time

Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing

of this document does not give you any license to these patents.

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Atollic TrueSTUDIO is a registered trademark of Atollic AB. ARM and Cortex are registered trademarks of ARM Limited. All other
trademarks are the property of their respective owners.

Abassi RTOS

Port — ARM Cortex-M4 — Atollic 2012.06.02

Table of Contents

1 INTRODUCTION ...ttt et e e e ettt e e s bt e e s bt e e s s ettt e e s sbaeeessabeeessabeeessbeneessrbeneas 6
1.1 DISTRIBUTION CONTENTS tittiiiiiiittttitieessiiittttttteesessiisbssteessssssssbsssessssssassssssssesssssssbssssesssssisssrssssssesss 6
O 1Y T - 1 L] TSR 6

A I Y 2 €] Y i I 1 TR 7
A R [N R =T B 7Y od S = U = T 7
2.2 SATURATION BIT SEToUP ..ottt ittt ettt ettt ettt ettt e e s et e e s s bt e e e s ebb e e e s eabae e e s ba e e e s sabaeessabaeeessares 8
2 T o U KT = 10
2.4 IMULTITHREADING ...veti i ittt e e ettt e e sttt e s sttt e e e ettt s e s estes e s sabeeesabbeessaabeaesssbaeesaabbesssasbaeeessbbesesasbeesssnbeeeessnens 14

241 FUll MUIIENIEAAINGcviiiie ettt reene e e e tesresresneeneas 14
2.4.2 Partial MUItIthreadingccoooiiiiiicce e 16

I VI I 2 01 o 1 TR 18

3.1 INTERRUPT HANDLING ...vuttiiiieeee ittt et e e e e sttt e e e e s s ettt bt e e e e e s s sbbb bt e e s e e s ssbbbbbeeseesssssbbbbesesesssearbbaeeeeeas 18
3. L1 INErTUPE TADIE SIZE ..ttt 18
3. 1.2 INErTUPL INSTAIIET .o bbb 21

3.2 INTERRUPT PRIORITY AND ENABLINGcottittttiieeeesiittttiie e e e s s sittatee s e e s s sssbbbtessessssebbbbesssessssabsbanseeens 21

R T =Ny B I =T LU= TR 22

3.4 NESTED INTERRUPTS ...cotiitttttiieeeeeiitttttt e e e e s s siatbttteeeesssssbbbateeeeesssbbbateaseessabbbbbeesesssaasbbbbesesesssaabbbaeeeeess 24

4 STACK USAGE ...t e e e s et e s s b e e e s st be s s sbb e e e s sbbeeessabeeeeins 25

S =y A\ = L o IS o 1 = R 26

O O o 1o U =@ = R 29

T MEASUREMENTS ..ottt s e et e e st a e e s s bt e e e sbb e s e s sabeeessbbeessbaeeessares 30
% R Y/ =1V (0] = 2RO 30
A I 1 =1 N[O 270 33

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ..ot 38
8.1 CASE 0: IMINIMUM BUILD .vvviiiiiiiiiitttiiiee e e e s sttt e e e e e s s stttateaeesssssbbateaseesssasbasaessessssssbbasesseeessassrsreneeeess 38
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..c..uvvieeiitiieeserieesseieeeessaeeessinreesseseeeessanes 39
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY eeeeiiiicttteiiieeesiiiiteieeeeesssssssseessesssssssssessessssssssssssseess 40
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPENDceeevevvieeieiveeenenes 41
8.5 CASE4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBINcccoitviieiiiiieecitieee sttt 42
8.6 CASES: + EVENTS/ IMAILBOXES ...eoieiiuteieieittieeiettee e sttt e s s et e s s ettt e s s ibteessabbassssabaassssabasesssbaeessabeneessaens 43
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...cviiiiiieiiesieesieesteesteetesnsessaestaestaestaesessaessaesnnesneesseennas 44
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION)cvtiutrieniinieaiieeeneeneeseesiesneans 45
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...uvviiiiiiiiiiiiiiieieesseiiiriee e s s einrveeeeees 46

Rev 1.2 Page 3

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

List of Figures

FIGURE 2-1 PROJECT FILE LIST woiiitiiiitii ittt ctte et e stee et e st e st e e ste e s ste e e stee s teeenbaesstaesnbaessbeeenbeesstneenbeessteeenseeesees 7
FIGURE 2-2 GUI SETOF OS_ ISR STACK wiiicuiiiiiiiiiiniie bbb s 8
FIGURE 2-3 GUI SET OF SATURATION BIT CONFIGURATIONccciiitiiieitiieeiitteeeeetieeeeetreeesstreeeesataeesssseeesenveeas 10
FIGURE 2-4 GUI ENABLING OF THE FPU ..ot ettt sttt 11
FIGURE 2-5 GUI SETOF OS_FPU_ON_OFF .ottt bbb 13
FIGURE 2-6 GUI SETOF OS_ATOLLIC REENT ...cccecsiiiiiiiiiiiiitititete ettt 15
FIGURE 2-7 GUI SETOF OS_ATOLLIC REENT ...cociiiiiiiiiiiiiiiiis it 16
FIGURE 3-1 GUISETOF OS N INTERRUPTS ...cceiitititiiiiiiiiitste ettt 19
FIGURE 3-2 GUI SETOFOS N INTERRUPTS ..ot 20
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...cciiutieeiitieeeeireeecitreeeeetee e eveee e 31
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGScciveeeiitieeeeitreeeiitreeeeereeeeeereeeesenveees 33

Rev 1.2 Page 4

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

List of Tables

TABLE 1-1 DISTRIBUTION ..vtiiiteiitteiiteeiteeeiteesteesssesassseassesasesassessssssassessssssessesssssesssesesssessssesssesssssesssessseessnes 6
TABLE 2-1 0S ISR STACK . .iiiiiiitiiiiiie ittt bbb bbb bbb bbb bbb 7
TABLE 2-2 COMMAND LINE SETOF OS_ ISR STACK wcueuiiiiiiiiiiiitete ettt 8
TABLE 2-3 SATURATION BIT CONFIGURATIONcuvtiitieiiieeitteesteesstreesteeestseesseesssseesseeesssesssseesssesssssesssesssseessnes 9
TABLE 2-4 COMMAND LINE SET OF SATURATION BIT CONFIGURATION........cciuieitieeiireeitreesineessreesneessreessneessnes 9
TABLE 2-5 COMMAND LINE DISABLING THE FPU ..ottt etae e 11
TABLE 2-6 FPU RUN TIME ON / OFF CONFIGURATION ...veiiiviiiiteeirieiiteesteesireesresasessressnsessressnsesssssssnsesssses 12
TABLE 2-7 COMMAND LINE SETOF OS_FPU_ ON_OFF.cciiiiiiiiiiiiiiiieiieieieee e 12
TABLE 2-8 ASSEMBLY FILE MULTITHREAD CONFIGURATION0ceiitieiiteesteeaiteesteeenseesssseesseesssssesseesssssessessssees 14
TABLE 2-9 COMMAND LINE SET OF MULTITHREAD CONFIGURATIONcoivtiiitieiteeereesreeenreesstneenseessrnesnseesssnas 14
TABLE 2-10 COMMAND LINE SET OF MULTITHREAD CONFIGURATIONvviiitieiieeeteesiteeeireessteeesteessrneenneessnnas 15
TABLE 2-11 SETTING A TASK TO USE RE-ENTRANT LIBRARYttiiiiitiieeiitieeeeiteeeesitteeesstreeesnsseeesssresessseesenns 17
TABLE 3-1 ABASSI CORTEXM4 ATOLLIC.S INTERRUPT TABLE SIZINGcccevviiiiiiiicieieicieee e 18
TABLE 3-2 COMMAND LINE SET THE INTERRUPT TABLE SIZE.....ccuutiiiitiieeeiiieeesieee e s siteeeesineessnneeessnneeessnnneeeans 18
TABLE 3-3 OVERLOADING THE INTERRUPT TABLE SIZING FOR ABASST . C cuvveeerrrreesirreeesssreesssssneessseeessssneeenns 19
TABLE 3-4 ATTACHING A FUNCTION TO AN INTERRUPTttiiiiitiee e cittee e e ettte e e eteeeestveeeeetbaeesenteesessareeessnreeeeans 21
TABLE 3-5 INVALIDATING AN ISR HANDLER.......cutttiiiitteeeeitttee e ettt e e setteeesetteeeeeteeeesetaeesesstaesesessesesssreeesaseeeenns 21
TABLE 3-6 DISTRIBUTION INTERRUPT TABLE CODE-.......cetiiiitiieeiitireesitieeeasiteeesssesessssnesesssssesssnssssesssssssssseseenns 22
TABLE 3-7 STM32F407 UART 1/ 2 FAST INTERRUPTS....ccitttiiteiiitieeiteesiteesnteesiteesteesbeesreesbeesreessreeenseesssnas 22
TABLE 3-8 FAST INTERRUPT WITH DEDICATED STACK ..eiiiittiiieitieeeiitieeeesttteeestaeeessnaeeessssseessssesessnsnessssseesenns 23
TABLE 3-9 REMOVING INTERRUPT NESTING ...veeeiiutttieitieeeaitteeeeiteeeesissesssssssessssssesssssssssssssesssnssssesssssssssssesenns 24
TABLE 3-10 PROPAGATING INTERRUPT NESTINGcciiiitteteeiiiteeeitnreesiuteeesssteeessseseessssssssssssssesnssssessssssssssseeenns 24
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTSecttiitieiteesteeateesteesteestasasesssesansessssssessessssssensesssses 25
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ...vviiiitiiee ettt e e ettt e e stteeeeetteeeeetaeeesetteeesssbaeeesssesessaresessnseeeenns 27
TABLE 7-1 “C” CODE MEMORY USAGEcoittiiiiitie e eetee e ettt e et e e etee e e ettae e e etae e e s etaeeaeentaeeesnssesesssseeesanseeeeans 32
TABLE 7-2 “C” LIBRARY MULTI-THREADING PROTECTIONcccecuviieiitieeeeetieeeeitreeeseseeeesesseeesssssesesssseeessseeeeans 32
TABLE 7-3 ASSEMBLY CODE MEMORY USAGEcoiiiitiieeicttieeeetie e e setteeeeettee e e eetaeeesetaeeeaestaeeesessesessaresesaseeeeans 32
TABLE 7-4 MEASUREMENT WITHOUT TASK SWITCHuviiiiiiiiiectiee e eettee e eetee e et e s etee e e eatae e e eraeeessnveeessnneeeeens 34
TABLE 7-5 MEASUREMENT WITHOUT BLOCKINGcoutiiieiiiiiieeciie e e sitiee e e sttte e e stee e e s etaeeessnbaeeesnnesessnnneeesnseeeeans 34
TABLE 7-6 MEASUREMENT WITH TASK SWITCH ...vviiiiiiieeiiiiee et sitee e s sttee e e stee e e s steeeeassbaeeesnseeessnneeeesnsneeenns 35
TABLE 7-7 MEASUREMENT WITH TASK UNBLOCKINGceceitviieeiiieeeiitieeeestteeeestneeesinneeesssssessssnssessssessssssseeenns 35
TABLE 7-8 LATENCY MEASUREMENTS FPU OFF ...ttt ettt 36
TABLE 7-9 LATENCY MEASUREMENTS FPU ONoiiiiiii ettt 37
TABLE 8-1: CASE O BUILD OPTIONSccutttieeittteeeitteeesitteeesatteeesssssassasseseassssesssnsssesssssssesssssesssnssssssssesesasssseenns 38
TABLE 8-2: CASE L BUILD OPTIONSutteeeiittieeeeiteeeeeetteeesetteeeeasaesesesseseaassesessasesessasseeessssseessassesessssesesssseesesns 39
TABLE 8-3: CASE 2 BUILD OPTIONScutteieeitteeeeeiteeeeeetteeeeetteeeeesaesesesseeeaassesesaaseseesessessassseeesssssesessssesesasseeeesns 40
TABLE 8-4: CASE 3BUILD OPTIONSutteeeeittieeeeteeeeeiteeeeaeteeeeeisaesesesaeseaasteeessaseseesessesesassseessassesesssesesasseeeesns 41
TABLE 8-5: CASE 4 BUILD OPTIONSutvieeiitteeeeeiteeeeeetteeeaetteeeeeisaesesessessaastesesaasesessassssesssseeessassesessssesesssseesesns 42
TABLE 8-6: CASE 5 BUILD OPTIONSuvvieeiitteeeeeteeeeiiteeeesesteeeesssssessessssssassessssssssessesssesasssessssssssssssssesesssseseesns 43
TABLE 8-7: CASE 6 BUILD OPTIONScuttiieiittteeeitereesitreeeeatteeesasssessassesesastsessasssessassssssssssesssssessesssesesasssesenns 44
TABLE 8-8: CASE 7 BUILD OPTIONScuttiieiittteeeiteeeesitteeeeatteeesasasaesasseseaasssessassseesassssssssssesssnsessesssesesssssesenns 45
TABLE 8-9: CASE 8 BUILD OPTIONSuttiieiitttieeiteeeesitteeeaatteeesasesassasseseaasssessaasssessassssesssssesssnsessesssesesasseeeenns 46

Rev 1.2 Page 5

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

1 Introduction

This document details the port of the Abassi RTOS to the ARM Cortex-M4 processor. The software suite
used for this specific port is the Atollic TrueSTUDIO for ARM; the version used for the port and all tests is
V3.1.0 Pro.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:;

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

syscalls.c Minimum system call file modified for multi-tasking
Abassi_ CORTEXM4_ATOLLIC.s RTOS assembly file for the ARM Cortex-M4 to use with

the ATOLLIC TrueSTUDIO.

Demo_1_ STM32_P407_ATOLLIC.c | Demo code that runs on the Olimex STM32-P407
evaluation board

Demo_3_STM32_P407_ATOLLIC.c | Demo code that runs on the Olimex STM32-P407
evaluation board

Demo_5_STM32_P407_ATOLLIC.c | Demo code that runs on the Olimex STM32-P407
evaluation board

Demo_7_STM32_P407_ATOLLIC.c | Demo code that runs on the Olimex STM32-P407
evaluation board

AbassiDemo.h Build option settings for the demo code

NOTE: The supplied file syscalls.c MUST be used with all applications based on Abassi. This
syscalls.c is a slightly modified version of the default Atollic file. Not using the supplied file
will most likely fail memory allocation through malloc (), or not report malloc () failures.
Even if the application does not use memory allocation, the library itself internally calls
malloc ().

1.2 Limitations

To optimize reaction time of the Abassi RTOS components, it was decided to require the processor to
always operate in privileged mode (which is the default start-up mode for Cortex-M microcontrollers) and
to always use the main stack pointer (MSP). The start-up code supplied in the distribution fulfills these
constraints and one must be careful to not change these settings in the application.

The svcall interrupt (interrupt number -5 / interrupt vector number 11) is not available as it is reserved for
the OS, and the Abassi RTOS uses it.

Rev 1.2 Page 6

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

2 Target Set-up

Very little is needed to configure the Atollic TrueSTUDIO development environment to use the Abassi
RTOS in an application. All there is to do is to add the files Abassi.c, Abassi CORTEXM4 ATOLLIC.s
and syscalls.c (the one supplied with the distribution) in the source files of the application project, and
make sure the four configuration settings in the file Abassi CORTEXM4 ATOLLIC.s (0S ISR STACK &S
described in Section 2.1, 0S_HANDLE PSR _Q as described in Section 2.2, os_Fpu_ON_OFF described in
Section 2.3, and 0s ATOLLIC REENT described in Section 2.4) are set according to the needs of the
application. As well, update the include file path in the C/C++ compiler preprocessor options with the
location of abassi.h. There is no need to include a start-up file, nor a file for the interrupt table, as the
Abassi CORTEXM4 ATOLLIC.s file contains all the start-up operations, including the interrupt table and
exception handlers.

f=1 C/C++ - Atollic True! DIO® for ARME Pr

File Edit Source Refactor View Mavigate Search Project Run Window Help

¢ [[[€1 &9 [ARRAAER & & Ef %5 Debug [Bp C/Cer
&~ o+ @0-B-206
%I C/C++ Projects &1
4 |25 Deme_1_ATOLLIC
> [ait Includes
- [5] Abassi_ CORTEXM4_ATOLLIC.s

o [Abassi.c
. [n] Abassih

/Demo_1_ATOLLIC

Figure 2-1 Project File List

2.1 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an
application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate
extra room to the stack of every task in the application to handle the interrupt nesting. This feature is
controlled by the value set by the definition os 1sr_sTack, located around line 25 in the file
Abassi CORTEXM4 ATOLLIC.s. To disable this feature, set the definition of 0s ISR STACK to a value
of zero. To enable it, and specify the interrupt stack size, set the definition of oS ISR STACK to the
desired size in bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the
hybrid stack feature is enabled, and a size of 1024 bytes is allocated; this is shown in the following table:

Table 2-1 0os_ISR_STACK

#ifndef OS_ISR STACK
.equ OS ISR STACK, 1024 /* If using a dedicated stack for the nested ISRs */
#endif /* 0 1f not used, otherwise size of stack in bytes */

Rev 1.2 Page 7

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

Alternatively, it is possible to overload the 0s ISR sTACK value set in Abassi CORTEXM4 ATOLLIC.s

by using the assembler command line option -p and specifying the desired hybrid stack size, as shown in
the following example, where the hybrid stack size is set to 512 bytes:

Table 2-2 Command line set of 0S_ISR_STACK

arm-atollic-eabi-gcc assembler-with-cpp .. -DOS ISR STACK=512 ..

The hybrid stack size can also be set through the GUI, in the “C/C++ Build = Settings = Tool Setting =
Assembler 2 Symbols” menu, as shown in the following figure:

r y
E Properties for Demo_1_ATOLLIC @M
type filter text Settings (=1 g - v

Resource
Builders
C/C++ Build Configuration: [Releasa 'I [Manage Cenfigurations...

Build Variables
Discovery Options
Environment @ Target Settings & Tool Settings |?‘ Build Steps | Build Artifact | Binary Parser;l @ Error Parsers|
Logging
Settings i Assembler Defined symbols aa 8
i =
oot D
/C++ General [General
Project References (% Symbols
Review (% Debugging
Run/Debug Settings (2 Miscellaneous
Task Repository (2 Directories
Testing B3 C Compiler
WikiText (2 Target
(2 General
! (£ Symbols
(2 Directories
(22 Optimization
(22 Debugging
@ Warnings
-
® %Il‘:‘tze\\anenus Undefined symbols &)
@ Target
[@ General
@ Libraries
fl @ Optimization
(2 Miscellaneous
By Other
(2 Reports
(2 Output format

[Restore Defaults l I Apply]

)

[QK J [Cancel]

Figure 2-2 GUI set of 0s_ISR_STACK

2.2 Saturation Bit Set-up

In the ARM Cortex-M4 status register, there is a sticky bit to indicate if an arithmetic saturation or
overflow has occurred during a DSP instruction; this is the Q flag in the status register (bit #27). By
default, this bit is not kept localized at the task level, as it needs extra processing during a context switch to

do so; instead, it is propagated across all tasks. This choice was made because most applications do not
care about the value of this bit.

Rev 1.2 Page 8

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

If this bit is relevant for an application, even in a single task, then it must be kept locally in each task. To
keep the meaning of the saturation bit localized, the token 0s HANDLE PSR @ must be set to a non-zero
value; to disable it, it must be set to a zero value. This is located at around line 35 in the file
Abassi CORTEXM4 ATOLLIC.s. The distribution code disables the localization of the Q bit, setting the
token 0s_HANDLE PSR _Q to zero, as shown in the following table:

Table 2-3 Saturation Bit configuration

#ifndef OS HANDLE PSR Q
.equ OS HANDLE PSR Q, O /* If we keep the Q bit (saturation) on per tasks */

#endif

Alternatively, it is possible to overload the ©0s HANDLE PSR Q value set in
Abassi CORTEXM4 ATOLLIC.s by using the assembler command line option -p and specifying the
desired setting with the following:

Table 2-4 Command line set of Saturation Bit configuration

arm-atollic-eabi-gcc assembler-with-cpp .. -DOS_HANDLE PSR Q=1 ..

Rev 1.2 Page 9

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The saturation bit configuration can also be set through the GUI, in the “C/C++ Build = Settings = Tool
Setting = Assembler = Symbols” menu, as shown in the following figure:

type filter text

Resource
Builders
C/C++ Build
Build Variables
Discovery Options
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
Project References
Review
Run/Debug Settings
Task Repository
Testing
WikiText

Configuration: [Release

'I [Manage Configurations...

2 Target Settings | & Tool Settings |P‘ Build Steps |

Build Artifact | Binary Parsers I 3 Error Parsers|

3 Assembler
(5 Target
@ General
@ Symbols
@ Debugging
@ Miscellaneous
@ Directories
83 C Compiler

Defined symbols

05_HANDLE_PSR_Q=1

&8 8 5L

(% Target

(2 General

(2 Symbols

(22 Directories

(2 Optimization

(2 Debugging

(22 Warnings

(2 Miscellaneous
i3 CLinker

(2 Target

@ General

@ Libraries

@ Optimization

@ Miscellaneous
By Other

@ Reports

@ Qutput format

Undefined symbols a0 8§ &

[Restore Defaults] [

©) (

Apply]

ok ||

Cancel]

Figure 2-3 GUI set of Saturation Bit configuration

2.3 FPU set-up

The assembly file Abassi CORTEXM4 ATOLLIC.s, depending on its configuration, handles three different
types of FPU use. They are:

» The FPU is always disabled
» The FPU is always enabled

» The FPU is turned on and turned off during runtime

Rev 1.2 Page 10

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The file Abassi CORTExM4 ATOLLIC.s is aware of the enabling or disabling of the FPU by the assembly
setting in the GUI in “C/C++ Build = Settings = Tool Settings = Assembler - Target = Floating
point” which ends up defining the symbol sorTFp__ when the floating point setting is set to “Sofiware

2.

implementation”; the symbol _ sorTrFp__ is not defined for the two other settings, meaning the FPU is
used.

There are two ways to set-up the assembler to support the FPU instructions. This is done on the command
line through the option -mfloat-abi=softfp. If the command line option -mfloat-abi=softfp is
specified, then all floating point operations use the software implementation, and the FPU is not used. If
the command line option -mfloat-abi=softfp is not specified, then the FPU is used:

Table 2-5 Command line disabling the FPU

arm-atollic-eabi-gcc assembler-with-cpp .. -mfloat-abi=softfp ..

The enabling of the FPU can also be performed through the GUI, in the “C/C++ Build - Settings - Tool
Settings = Assembler 2 Target = Floating point” menu, by setting the Floating Point to a setting

different than Software implementation. If the setting for Floating Point is set to Software implementation,
then the FPU is turned off.

L=] Properties for Dema_1_ATOLLI

type filter text Settings
Resource
Builders
C/C++ Build
Build Variables
Discovery Options

Configuration: [Releasa '] [Manage Configurations...

Environment
Logging

€ Target Settings| &9 Tool Settings |ﬁ' Build Steps | Build Artifact | Binary Parsersl @ Eror Parsers|

Settings

Tool Chain Editor
C/C++ General
Project References
Review
Run/Debug Settings
Task Repository
Testing
WikiText

4 By Assembler
@ Target
@ General
@ Symbols
@ Debugging
@ Miscellaneous
(% Directories
4 83 CCompiler
(2 Target
(2 General
(2 Symbols
(22 Directories
(22 Optimization
(22 Debugging
(22 Warnings
(22 Miscellaneous
4 B33 Clinker
@ Target
@ General
@ Libraries
@ Optimization
@ Miscellaneous
4 8 Other
(2 Reports
(2 Output format

Instruction set [ARM

[T Mix ARM/Thumb

Floating point [Hardware implementation

[Restore Defaults l I Apply]

? [ok][concal |

Figure 2-4 GUI enabling of the FPU

Rev 1.2 Page 11

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

NOTE: The setting of the CPU must be identical for both the assembler AND the compiler. A mismatch
between the two settings will most likely result in a run time hard fault.

When the FPU is enabled, each task can use a different configuration of the FPU (through the Fpcsr
register), as the contents of this register are part of the task context save. All tasks upon start will have their
local Frcsr value set according to the value of FPCSR register upon calling osstart (). This means if the
application globally requires a different setting of the FPU than the default set by the compiler, the Fpcsr
must be modified before calling osstart ().

It is also possible to turn on and turn off the FPU during runtime, and the ON / OFF setting is also kept on a
per task basis. For this feature to be available, the FPU must be used (the token sorTrFp_ not defined,
or the GUI configuration for the compiler and assembler not set to “Software implementation”). This
means the FPU can be enabled in a set of tasks, and not for the other tasks in the application. All tasks,
upon start, will inherit the same ON / OFF state of the FPU as when osstart () was called. When this
feature is required, the build option os rpu on OFF, located around line 40 in the file
Abassi CORTEXM4 ATOLLIC.s, must be set to a non-zero value. The distribution code does not enable
the capability of turning the FPU ON and OFF during runtime, setting the token 0s_FpPu ON_OFF to zero,
as shown in the following table:

Table 2-6 FPU run time ON / OFF configuration

#ifndef OS_FPU_ON_OFF
.equ OS_FPU ON OFF, O /* If the FPU can be turned ON/OFF during runtime */

#endif

Alternatively, it is possible to overload the os FpuU_oN_OFF value set in Abassi CORTEXM4 ATOLLIC.s
by using the assembler command line option -D and specifying the desired setting for os_FPU_ON_OFF
with the following:

Table 2-7 Command line set of 0s_FPU_ON_OFF

arm-atollic-eabi-gcc assembler-with-cpp .. -mfloat-abi=softfp -DOS FPU ON OFF=1

Rev 1.2 Page 12

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The indication the FPU is turned on and off during runtime can also be set through the GUI, in the “C/C++
Build = Settings = Tool Setting = Assembler = Symbols” menu, as shown in the following figure:

r N
[E] Properties for Dema_1_ATOLLIC o

type filter text Settings & = =
Resource
Builders
C/C++ Build Configuration: [Release 'I [Manage Configurations...
Build Variables
Discovery Options
Enviranment € Target Settings i Tool Settings |P‘ Build Steps | Build Artifact | Binary Parsersl @ Error Parsers|
Logging
Settings B Assembler Defined symbols & e &8
1
e chan Eelter o
/C++ General (22 General
Project References (&2 Symbols
Review (# Debugging
Run/Debug Settings @ Miscellaneous
Task Repository (# Directories
Testing 83 C Compiler
WikiText (2 Target
(2 General
(2 Symbols
(22 Directories
(2 Optimization
(2 Debugging
(22 Warnings
-
I ® Cb“'iir:‘dll:e\\aneous Undefined symbols &
(2 Target
[l @ General
@ Libraries
@ Optimization
@ Miscellaneous
By Other
@ Reports
@ Qutput format

[Restore Defaults] [Apply]

@ [ok][Concal |

Figure 2-5 GUI set of os_FPU_ON_OFF

There are two requirements to fulfill when the FPU is turned on and off during runtime. The first one,
which is not related to the RTOS but is a restriction by the Cortex-M4 core, is to never have a different
enable setting of the FPU between the entry and the exit of an ISR. This means that turning ON and then
OFF the FPU in an interrupt is safe. But turning it ON, without turning it OFF before exiting the interrupt,
will crash the application. If the FPU is ON upon entry in the interrupt and it gets turned OFF in the
interrupt without being turned back ON, it will trigger an access fault exception. Beware of interrupt
nesting when turning on and off the FPU in an interrupt. If two interrupts that can be nested turn on and off
the FPU, then turning off the FPU at the end of the interrupt will break the required condition. Instead, the
entry state of the FPU must be restored at the exit of the interrupt.

The second requirement when the FPU is turned ON and OFF during runtime is that it is necessary to set
the svcall (Service call exception vector #11, interrupt #-5) priority to the highest level. This is
configured in the System Handler Priority Register 2 (SHPR2) register. If this register is not modified, then
at start-up the priority of the svcal1l exception is set to the higher level.

NOTE: When the FPU is turned OFF in a task, the setting of the Fpcsr will quite likely be set back to the
task start-up value upon turning ON the FPU afterward.

Rev 1.2 Page 13

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

2.4 Multithreading

The Atollic 1ibc library can be set to be fully reentrant and multithread-safe. The multithreading setting
on how the library is used depends on the definition of the build option 0s_aTorric REENT. If this build
option is not defined, or if it is defined with a value of zero, the library is neither reentrant nor
multithread-safe. If the build option is positive, the library is multithread-safe and reentrant for each one of
the tasks. If the build option value is negative, only selected tasks use the library in a multithread-safe and
reentrant manner.

2.4.1 Full multithreading

For full multithreading of the library, all there is to do is to define the build option 0S ATOLLIC REENT
with a positive value, for both the compiler and the assembler.

The build option can be set directly in the assembly file; this is located at around line 45 in the file
Abassi CORTEXM4 ATOLLIC.s. The distribution code disables multithreading, setting the token
0OS_ATOLLIC REENT to zero, as shown in the following table:

Table 2-8 Assembly file multithread configuration

#ifndef OS_ATOLLIC REENT /* When library re-entrance is required, when +ve the */
.equ OS ATOLLIC REENT, 0 /* task context switch updates the impure ptr variable*/
#endif /* with the task's libc context */

Alternatively, it is possible to overload the o0s arorLic REENT value set in
Abassi CORTEXM4 ATOLLIC.s by using the assembler command line option -p and specifying the
desired setting with the following:

Table 2-9 Command line set of multithread configuration

arm-atollic-eabi-gcc assembler-with-cpp .. -DOS ATOLLIC REENT=1 ..

Rev 1.2 Page 14

Abassi RTOS

Port — ARM Cortex-M4 — Atollic

2012.06.02

The multithreading configuration can also be set through the GUI, in the “C/C++ Build = Settings = Tool
Setting = Assembler - Symbols” menu, as shown in the following figure:

[E] Properties for Demo_1_ATOLLIC BN EEE
Settings - v -
Resource
Builders
C/C++ Build Configuration: [DEbUQ [Active | 'l [Manage Configurations...
Build Variables
Discavery Options
Environment © Target Settings i Tool Settings |P‘ Build Steps | Build Artifact | Binary Parsersl @ Error Parsersl
Logging
Settings i Assembler Defined symbols a8 858
Tool Chain Editor (22 Target = =
C/Cos Genersl 5 Genersl
Project References & Symbols
Review @ Debugging
Run/Debug Settings (# Miscellaneous
Task Repositery (2 Directories
Testing 3 C Compiler
WikiText (% Target
@ General
(2 Symbols
(2 Directories
(2 Optimization
(2 Debugging
i Wamnings
| 5 MisceHagneous N -
) C Linker Undefined symbols a8 853
fl (2 Target
(22 General
@ Libraries
@ Optimization
@ Miscellaneous
By Other
@ Reports
@ Qutput format
[Restora Defau\ts] [Apply]
@ [OK J [Cancel]
.

Figure 2-6 GUI set of 0S_ATOLLIC_ REENT

The exact same definition of 0S_ATOLLIC REENT as the one specified for the assembler must be must be

given to the compiler. This can be done with the command line option -D and specifying the setting with
the following:

Table 2-10 Command line set of multithread configuration

arm-atollic-eabi-gcc ..

-DOS_ATOLLIC_REENT=1 ..

Rev 1.2

Page 15

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The multithreading configuration can also be set through the GUI, in the “C/C++ Build - Settings - Tool
Setting = C Compiler = Symbols” menu, as shown in the following figure:

i
[E] Properties for Demo_1_ATOLLIC

e

Settings 4 v

Resource

Builders

C/C+ Build Configuration: Debug [Active]
Build Variables
Discovery Options

Environment 2 Target Settings | & Tool Settings |P‘ Build Steps | Build Artifact | Binary Parser;l 3 Error Parsers|

Logging

'I [Manage Configurations...

Settings

Tool Chain Editor
C/C++ General
Project References
Review
Run/Debug Settings
Task Repository
Testing
WikiText

3 Assembler
(5 Target
@ General
@ Symbols
@ Debugging
@ Miscellaneous
@ Directories
83 C Compiler
(% Target

Defined symbols

aa 8
05_ATOLLIC_REENT=1

(2 General Il
(2 Symbols
(22 Directories
(2 Optimization
(2 Debugging
(22 Warnings
-
® Cb“'iir:‘dll:e\\aneous Undefined symbals &
(2 Target
@ General
@ Libraries
@ Optimization
@ Miscellaneous
By Other
@ Reports
@ Qutput format

[Restore Defaults] [Apply]

@ Lo]|

Cancel]

Figure 2-7 GUI set of 0S_ATOLLIC_ REENT

2.4.2 Partial multithreading

The use of full multithread protection for the library requires around ¥ kilobyte of extra data memory for
each task in the application. The extra memory required is not due to Abassi, but is what the library
requires to be set reentrant. On data memory restricted applications, it may be impossible to use full
multithreading protection. Setting the build option 0s_ATOLLIC REENT to a negative value allows you to
select specific tasks where reentrance is required. The library is still multithread-safe, even when the build
option is negative, only the reentrance is selectable.

The build option 0S_ATOLLIC REENT is set the same way as described in the previous section.

Rev 1.2 Page 16

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

Partial multithreading means that only the tasks that are set up to use the library in a reentrant manner
require the ¥ kilobyte block of extra data memory. Not only is memory needed for the library context data
structure, but if file 1/0 is used in the task, more memory is allocated for the buffering of the file or stream.
It is a good practice to use the standard library function setbuf (), or setvbuf () to tailor each stream
buffer size, as the library default buffer size (defined as BUFSIZ in stdio.h) is set to 1024 bytes. The
most well known modules that are under reentrance control in the library are:

The time structure tm

atexit ()

stdio

File 1/O for stdin, stdout, stderr
Rand / Rand48

Errno

Signals

YV V V V V VYV V VY

Locale
> And a few more

If a task uses none of the above modules, then the task does not need to access the library in a reentrant
manner, so there is no need to reserve the memory block of ¥ kilobyte of data memory. If a task uses one
or more modules, but it is the only task using this/these module(s), there is still no need to make the library
reentrant for that task. Only when two or more tasks use the same modules for the library do these tasks
need to access the library in a reentrant manner.

A task is set to use the library in a reentrant manner with the following:

Table 2-11 Setting a task to use re-entrant library

#inclde “Abassi.h”

TSK_t *TskReent 1
struct reent Reent 1;

/* First the task must be created */
/* in the suspended state */
TskReent 1 = TSKcreate (“TaskName”, TskPrio, StackSize, TaskFct, 0);

REENT INIT PTR(&Reent 1); /* Initialzation of the libc context */
TskReent 1->XtraData[O] = (intptr t)&Reent 1; /* Attach the context to the task */
TSKreseum (TskReent 1) ; /* The task may now be resumed */

The declaration “struct reent Reent 1;” can be replaced by a memory allocation of
sizeof (struct reent).

Rev 1.2 Page 17

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt
context. For all interrupt sources (except interrupt numbers less than -1) the Abassi RTOS provides an
interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the
kernel uses it to know if a request occurs within an interrupt context or not. Second, using this dispatcher
reduces the code size, as all interrupts share the same code for the decision making of entering the kernel or
not at the end of the interrupt: there is no need to add a preamble / epilogue in the functions handling the
interrupts.

The distribution makes provision for 241 sources of interrupts, as specified by the token
0S_N_INTERRUPTS in the file Abassi CORTExM4 ATOLLIC.S, and the internal default value used by
Abassi.c. Eventhough the Nested Vectored Interrupt Controller (NVIC) peripheral supports a maximum
of 256 interrupts on the Cortex-M4, the first 15 entries of the interrupt vector table are hard mapped to
dedicated handlers (the interrupt number -1, which is attached to sysTick, is not hard mapped but is
handled by the ISR dispatcher).

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 256 interrupts, as they typically only handle between 64 and 128 sources of
interrupts. The interrupt table can be easily reduced to recover code space, and at the same time recover the
same amount of data memory. There are two files affected: in Abassi CORTEXM4 ATOLLIC.s, the ARM
interrupt table itself must be shrunk, and the value used in the file Abassi.c, in order to reduce the ISR
dispatcher table look-up. The interrupt table size is defined by the token 0s N INTERRUPTS in the file
Abassi CORTExXM4 ATOLLIC.s around line 35. For the value used by Abassi.c, the default value can
be overloaded by defining the token 0s N INTERRUPTS when compiling Abassi.c . The distribution
table size is set to 241; that is the NVIC maximum of 256 minus the 15 hard mapped exceptions.

For example, the STM32F407 device from ST Microelectronics uses only the first 100 entries of the
interrupt table (84 external interrupts plus the standard 16 exceptions). The 256 entries table can therefore
be reduced to 100. The value to set in Abassi CortexM4 ATOLLIC.s is 85, which is the total of 100
entries minus 15 (there are 15 hard mapped exceptions). The changes are shown in the following table:

Table 3-1 Abassi_CORTEXM4_ATOLLIC.s interrupt table sizing

#ifndef OS N INTERRUPTS /* # of entries in the interupt table mapped to */
.equ OS_N_INTERUPTS, 85 /* ISRdispatch () */
#endif

Alternatively, it is possible to overload the 0s N INTERRUPTS Value set in
Abassi CORTEXM4 ATOLLIC.s by using the assembler command line option -D and specifying the
desired setting with the following:

Table 3-2 Command line set the interrupt table size

arm-atollic-eabi-gcc assembler-with-cpp .. -DOS_N INTERRUPTS=85

Rev 1.2 Page 18

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The overloading of the default interrupt vector look-up table used by abassi.c is done by using the
compiler command line option -p and specifying the desired setting with the following:

Table 3-3 Overloading the interrupt table sizing for Abassi.c

arm-atollic-eabi-gcc .. -DOS N INTERRUPTS=85

The interrupt table size used by Abassi CORTExM4 ATOLLIC.s can also be set through the GUI, in the

“CIC++ Build = Settings = Tool Setting = Assembler = Symbols” menu, as shown in the following
figure:

r y
[E] Properties for Demo_1_ATOLLIC o o |
type filter text Settings (=14 v -

Resource

Builders

C/C++ Build Configuration: [Relea;e 'I [Manage Configurations...
Build Variables

Discavery Options

Environment € Target Settings) Tool Settings |P‘ Build Steps | Build Artifact | Binary Parser;l @ Error Parsers|
Logging
Settings) Assembler Defined symbols & & 85l
b
oo S o
/C++ General (22 General
Project References @ Symbols
Review (# Debugging
Run/Debug Settings (# Miscellaneous
Task Repositery (2 Directories
Testing 83 C Compiler
WikiText (2 Target
(2 General
(2 Symbols

(2 Directories
(2 Optimization
(2 Debugging
(22 Warnings
(2 Miscellaneous X
) C Linker Undefined symbols
(2 Target
@ General
@ Libraries
@ Optimization
@ Miscellaneous
By Other
| @ Reports
@ Qutput format

80 8§ L

[Restore Defaults] [Apply]
@ [

ok [Coneal |

Figure 3-1 GUI set of 0S_N_INTERRUPTS

Rev 1.2 Page 19

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The interrupt table look-up size used by abassi . c can also be overloaded through the GUI, in the “C/C++
Build = Settings = Tool Setting = C Compiler = Symbols” menu, as shown in the following figure:

[E] Properties for Demo_1_ATOLLIC E@g
type filter text Settings Or T w
Resource
Builders
C/Ce+ Build Configuration: Debug [Active]

'] [Manage Configurations...
Build Variables

Discovery Options

Environment
Logging

© Target Settings | &) Tool Settings |.ﬁ' Build Steps |

Build Artifact | Binary Parsersl & Error Parsersl

Settings

Tool Chain Editor
C/C++ General
Project References
Review
Run/Debug Settings
Task Repository
Testing
WikiText

B3 Assembler
(22 Target
(2 General
(22 Symbols
(22 Debugging
@ Miscellaneous
@ Directories
i3 C Compiler

Defined symbols

aa 85l L

05_N_INTERRUPTS=85

@ Target
@ General
fl @ Symbols
@ Directories
(% Optimization
ll (% Debugging
| (2 Warnings

(2 Miscellaneous
B3 C Linker

(22 Target

(2 General

(E2 Libraries

I (22 Optimization

(22 Miscellaneous
3 Other

@ Reports

@ Qutput format

Undefined symbols

ali 8§l &

[Restore Defaults] [

Lo]I

Apply]

Cancel]

Figure 3-2 GUI set of 0s_N_INTERRUPTS

Rev 1.2 Page 20

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS
component 0SisrInstall () to specify the interrupt number and the function to be attached to that
interrupt number. For example, Table 3-4 shows the code required to attach the sysTick interrupt to the
RTOS timer tick handler (TIMtick):

Table 3-4 Attaching a Function to an Interrupt

#include “Abassi.h”

OSstart();

OSisrInstall (-1, &TIMtick);
/* Set-up the count reload and enable SysTick interrupt */

. /* More ISR setup */

OSeint (1) ; /* Global enable of all interrupts */

NOTE: o0SisrInstall () uses the interrupt number, NOT the interrupt vector number.

At start-up, once osstart () has been called, all os N _INTERRUPTS interrupt handler functions are set to
a “do nothing” function, named osinvalidIsr(). If an interrupt function is attached to an interrupt
number using the osisrInstall () component before calling osstart (), this attachment will be
removed by 0Sstart (), SO OSisrInstall () should never be used before osstart () has ran. When an
interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the
handling function can be set back to 0SinvalidIsr (). This is shown in Table 3-5:

Table 3-5 Invalidating an ISR handler

#include “Abassi.h”

/* Disable the interrupt source */
OSisrInstall (Number, &0SinvalidISR);

When an application needs to disable / enable the interrupts, the RTOS supplied functions osdint () and
0Seint () should be used.

The Nested Vectored Interrupt Controller (NVIC) on the Cortex-M4 does not clear the interrupt generated
by a peripheral; neither does the RTOS. If the generated interrupt is a pulse (as for the sysTick interrupt),
there is nothing to do to clear the interrupt request. However, if the generated interrupt is a level interrupt,
the peripheral generating the interrupt must be informed to remove the interrupt request. This operation
must be performed in the interrupt handler otherwise the interrupt will be re-entered over and over.

3.2 Interrupt Priority and Enabling

To properly configure interrupts, the interrupt priority must be set, and the peripheral configured to
generate interrupts and enable them. There is no software provided to perform these operations, as this
functionality is already available. First, Atollic supports the Cortex Microcontroller Software Interface
Standard (CMSIS), which provides everything required to program the processor peripherals. Second,
most chip manufacturers provide code to configure the specifics on their devices.

Rev 1.2 Page 21

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component
from Abassi, and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all
there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector
table used by the Cortex-M4 processor. The area of the interrupt vector table to modify is located in the
file Abassi CORTEXM4 ATOLLIC.s around line 100.

For example, on a ST Microelectronics STM32F407 device, UART #1 is attached to interrupt number 37
(interrupt vector number 53) and the UART #2 is attached to the interrupt number 38 (interrupt vector
number 54). The code to modify is located in the macro loop that initializes the interrupt table that sets the
ISR dispatcher as the default interrupt handler. All there is to do is add checks on the token holding the
interrupt number, such that, when the interrupt number value matches the desired interrupt number, the
appropriate address gets inserted in the table instead of the address of 1Ssrdispatch (). The original
macro loop code and modified one are shown in the following two tables:

Table 3-6 Distribution interrupt table code

.set INT_NMB, -1

.rept OS N INTERRUPTS /* Map all external interrupts to ISRdispatch() */
.word ISRdispatch
.set INT _NMB, INT NMB+1

.endr

Attaching a fast interrupt handler to the UART #1 and another one to UART#2, assuming the names of the
interrupt functions to attach are respectively UART1 IRQhandler () and UART2 IRQhandler () isshown
in Table 3-7:

Table 3-7 STM32F407 UART 1/ 2 Fast Interrupts

.global USARTO_IRQhandler
.global USART1_ IRQhandler

.set INT NMB, -1

.rept OS N INTERRUPTS /* Map all external interrupts to ISRdispatch() */
.if INT NMB == 5 /* When is interrupt # 5, set UART #0 handler */
.word USARTO IRQhandler
.elseif INT NMB == 6 /* When is interrupt # 6, set UART #1 handler */
.word USART1 IRQhandler
.else /* All others interrupt # set to ISRdispatch() */
.word ISRdispatch
.endif
.set INT NMB, INT NMB+1
.endr

It is important to add the ExTERN statement, otherwise there will be an error during the assembly of the file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

Rev 1.2 Page 22

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.
This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To
make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the

call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is
the regular interrupt dispatcher. Reusing the example of the UART #1 on the STM32F407 dev
would look something like:

Table 3-8 Fast Interrupt with Dedicated Stack

done in
ice, this

.if INT NMB == /* When is interrupt # 5, set UART #0 handler
.word UARTOpreHandler

.section .text.UARTOpreHandler

.align2

.code 16

.thumb_func

.type OScontext, %$function

EXTERN UARTOhandler
UARTOpreHandler:

cpsid I /* Disable ISR to protect against nesting

mov r0, sp /* Memo current stack pointer

ldr sp, =UARTO_stack /* Stack dedicated to this fast interrupt

cpsie I /* The stack is now hybrid, nesting safe

push {r0, 1lr} /* Preserve original sp & EXC_RETURN

bl UARTOhandler /* Enter the interrupt handler

pop {r0, 1r} /* Recover original sp & EXC_RETURN

mov sp, r0 /* Recover pre-isr stack

bx 1r /* Exit from the interrupt

.bss

.space UARTO_stack size /* Room for the fast interrupt stack
UARTO_ stack:

*/

*/
*/
*/
*/
*/

*/
*/

*/
*/

*/

The same code, with unique labels, must be repeated for each of the fast interrupts.

Rev 1.2

Page 23

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

3.4 Nested Interrupts

The interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will interrupt
the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 8 levels,
where level 0 is the highest and 7 is the lowest. This implies that the RTOS build option
OS_NESTED INTS must be set to a non-zero value. The exception to this is an application where all
enabled interrupts handled by the RTOS ISR dispatcher are set, without exception, to the same priority;
then interrupt nesting will not occur. In that case, and only that case, can the build option
OS_NESTED INTS be setto zero. As this latter case is quite unlikely, the build option 0S NESTED INTS
is always overloaded when compiling the RTOS for the ARM Cortex-M4. If the latter condition is
guaranteed, the overloading located after the pre-processor directive can be modified. The code affected in
Abassi.h is shown in Table 3-9 below and the line to modify is the one with #define
OX NESTED INTS 1:

Table 3-9 Removing interrupt nesting

#elif defined(_ GNUC) \
&& (defined(ARM ARCH 6M) || defined(ARM ARCH 7M) ||
defined(_ARM ARCH 7EM))

#define OX NESTED INTS 0 /* The ARM has 8 nested (NIVC) interrupt levels */

Or if the build option 0s_NESTED INTS is desired to be propagated:

Table 3-10 Propagating interrupt nesting

#elif defined(_ GNUC_) \

&& (defined(ARM ARCH 6M) || defined(ARM ARCH M) ||
defined(ARM ARCH 7EM))

#define OX NESTED INTS OS_NESTED INTS

The Abassi RTOS kernel never disables interrupts, but there is a few very small regions within the interrupt
dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20
instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS
component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only
once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at
the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already
active. This means that only the interrupt handler function operates in an interrupt context, and only the
time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the
interrupt controller.

Rev 1.2 Page 24

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,
the stack holds the register context that was preserved when the task got blocked or preempted. Also, when
an interrupt occurs, the register context of the running task must be preserved in order for the operations
performed during the interrupt to not corrupt the contents of the registers used by the task when it got
interrupted. For the Cortex-M4, the context save contents of a blocked or pre-empted task is different from
the one used in an interrupt, and is also different if the compiler is set to use the FPU or not. The following
table lists the number of bytes required by each type of context save operation:

Table 4-1 Context Save Stack Requirements

Description Context save
40 bytes
Interrupt dispatcher context save (0s ISR _STACK == 0) (FPU OFF) 40 bytes
Interrupt dispatcher context save (0s ISR STACK != 0) (FPU OFF) 48 bytes
Blocked/Preempted task context save (FPU ON) 112 bytes
Interrupt dispatcher context save (0s_ISR_STACK == 0) (FPU ON) 120 bytes
Interrupt dispatcher context save (0s_ISR_STACK != 0) (FPU ON) 128 bytes

The numbers for the interrupt dispatcher context save include the 32 bytes (FPU OFF) or the 96 bytes (FPU
ON) the processor pushes on the stack when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is
simply that every task in the application needs at least the area to preserve the task context when it is
preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in
the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So if N
levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR
context save on each task stack, plus any added stack used by all the interrupt handler functions. Finally,
add to all this the stack required by the code implementing the task operation.

NOTE: The ARM Cortex-M4 processor needs alignment on 8 bytes for some instructions accessing
memory. When stack memory is allocated, Abassi guarantees the alignment. This said, when
Sizing 0S_STATIC STACK Or OS ALLOC SIZE, make sure to take in account that all allocation
performed through these memory pools are by block size multiple of 8 bytes.

If the hybrid interrupt stack (see Section 2.1) is enabled, then the above description changes: it is only
necessary to reserve room on task stacks for a single interrupt context save (this excludes the interrupt
function handler stack requirements) and not the worst-case nesting. With the hybrid stack enabled, the
second, third, and so on interrupts use the stack dedicated to the interrupts. The hybrid stack is enabled
when the 0s_ISR STACK token in the file Abassi CORTExM4 ATOLLIC.s is Set to a non-zero value (see
Section 2.1).

Rev 1.2 Page 25

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

5 Search Set-up

The Abassi RTOS build option os_searcH rFasT offers three different algorithms to quickly determine
the next running task upon task blocking. The following table shows the measurements obtained for the
number of CPU cycles required when a task at priority O is blocked, and the next running task is at the
specified priority. The number of cycles includes everything, not just the search cycle count. The number
of cycles was measured using the sysTick peripheral, which decrements the counter once every CPU
cycle. The second column is when 0S_SEARCH FAST is set to zero, meaning a simple array traversing.
The third column, labeled Look-up, is when 0s SEARCH FAST is set to 1, which uses an 8 bit look-up
table. Finally, the last column is when 0s_SEARCH FAST is set to 5 (Atollic/Cortex-M4 int are 32 bits, so
275), meaning a 32 bit look-up table, further searched through successive approximation. The compiler
optimization for this measurement was set to Level High / Speed optimization. The RTOS build options
were set to the minimum feature set, except for option 05 PRIO CHANGE Set to non-zero. The presence of
this extra feature provokes a small mismatch between the result for a difference of priority of 1, with
0S_SEARCH_FAST Set to zero, and the latency results in Section 7.2.

When the build option 0s_SEARCH ALGO is set to a negative value, indicating to use a 2-dimensional
linked list search technique instead of the search array, the number of CPU cycles is constant at 275 cycles.

Rev 1.2 Page 26

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation
1 273 311 325
2 283 316 325
3 289 321 325
4 295 326 325
5 301 331 325
6 307 336 325
7 313 341 325
8 319 317 325
9 325 325 325
10 332 330 325
11 337 335 325
12 343 340 325
13 349 345 325
14 355 350 325
15 361 355 326
16 367 323 326
17 373 331 326
18 379 336 326
19 385 341 326
20 391 346 326
21 397 351 326
22 403 356 326
23 409 361 326
24 415 333 326

When 0s_SEARCH FAST is set to O, each extra priority level to traverse requires exactly 6 CPU cycles.
When 0s_SEARCH FAST is Set to 1, each extra priority level to traverse requires exactly 5 CPU cycles,
except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.
Overall, setting 0s_sEARCH FAST to 1 adds around 40 cycles of CPU for the search compared to setting
0OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, ... then there is an
extra number of cycles needed, but without the 8 times 8 cycle accumulation. Finally, the third option,
when 0S_SEARCH FAST is et to 5, delivers a quasi-perfectly constant CPU usage, as the algorithm utilizes
a successive approximation search technique (when the delta is 32 or more, the CPU cycle count is
336/337, for 64 or more, it is 343/344).

Rev 1.2 Page 27

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The first observation, when looking at this table, is that the second option, when 0S_SEARCH FAST is set to
1, is either less CPU efficient than the first option, the one when 0s_SEARCH FAST is set to 0, or less
efficient than the third option 0os_ SEARCH FAST is setto 5. So, the build option 0s searcH FasT should
never be set to 1, as it is the least efficient method. The other observation is that the first option
(0s_sEARCH FAST set to 0) delivers better CPU performance than the third option (0s SEARCH FAST set
to 5) when the search spans less than 8 to 9 priority levels. So, if an application has tasks spanning less
than 8 to 9 priority levels, the build option 0s seEarcH FasST should be set to O; for all other cases, the
build option 0s_searcH FaAST should be set to 5.

Setting the build option 0S_SEARCH ALGO to a non-negative value minimizes the time needed to change
the state of a task from blocked to ready to run, and not the time needed to find the next running task upon
blocking/suspending of the running task. If the application needs are such that the critical real-time
requirement is to get the next running task up and running as fast as possible, then set the build option
0S_SEARCH ALGO to0 a negative value.

Rev 1.2 Page 28

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

6 Chip Support

No chip support is provided with the distribution code because Atollic TrueSTUDIO for ARM supports the
Cortex Microcontroller Software Interface Standard (CMSIS). Therefore, all peripherals on the Cortex-M4
can be accessed through the CMSIS. Also, most device manufacturers provide code to configure the
peripherals on their devices.

Rev 1.2 Page 29

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the
RTOS is used on the ARM Cortex-M4 and compiled with Atollic TrueSTUDIO for ARM. The CPU
cycles are exactly the CPU clock cycles, as the processor typically executes one instruction at every clock
transition.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the
smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the
features. For both cases, names are not part of the build. This feature was removed from the metrics
because it is highly probable that shipping products utilizing this RTOS will not include the naming of
descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of
components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for
the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One
should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

Rev 1.2 Page 30

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The code memory required by the RTOS includes the “C” code and assembly language code used by the
RTOS. The code optimization settings of the compiler that were used for the memory measurements are;

1. Optimization Level: Optimize for speed (-0fast)

Enabled
3. Prepare dead data removal: Enabled
All other options are disabled as they do not affect the code generated.

2. Prepare dead code removal:

r
[E] Properties for Demo_1_ATOLLIC | o e |
Settings - v -
Resource
Builders
C/C+ Build Configuration: Debug [Active]

'I [Manage Configurations...
Build Variables

Discovery Options

Environment
Logging

2 Target Settings | & Tool Settings |P‘ Build Steps |

Build Artifact | Binary Parsers I 3 Error Parsers|

Settings

Tool Chain Editor
C/C++ General
Project References
Review
Run/Debug Settings
Task Repository
Testing
WikiText

3 Assembler
(2 Target
@ General
@ Symbols
@ Debugging
@ Miscellaneous
@ Directories
83 C Compiler
(2 Target

Optimization Level [th\rmza for speed (-Ofast)

Prepare dead code removal
Prepare dead data removal

(2 General

(2 Symbols

(2 Directories

(2 Optimization

(22 Debugging

(22 Warnings

(22 Miscellaneous
i3 CLinker

@ Target

@ General

@ Libraries

@ Optimization

@ Miscellaneous
By Other

(% Reports

(2 Output format

[Restore Defaults I I Apply]

? [ok][concal |

Figure 7-1 Memory Measurement Code Optimization Settings

Rev 1.2 Page 31

Abassi RTOS

Port — ARM Cortex-M4 — Atollic

2012.06.02

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 675 bytes
+ Runtime service creation / static memory < 925 bytes
+ Multiple tasks at same priority < 1000 bytes
+ Runtime priority change < 1475 bytes

+ Mutex priority inheritance
+ FCFS

+ Task suspension

+ Timer & timeout < 2175 bytes
+ Timer call back

+ Round robin

+ Events < 2975 bytes
+ Mailbox

Full Feature Build (no names) < 3650 bytes
Full Feature Build (no names / no runtime creation) < 3275 bytes
Full Feature Build (no names / no runtime creation) < 3225 bytes

+ Timer services module

Table 7-2 “C” library multi-threading protection

Description Size
OS ATOLLIC REENT < 0 +180 bytes
0S_ATOLLIC REENT > 0 +304 bytes

Table 7-3 Assembly Code Memory Usage

Description Size

Assembly code size (FPU OFF) 248 bytes
Assembly code size (FPU ON) 312 bytes
Vector table (per interrupt handler entry) +t4 bytes
Hybrid Stack Enabled +32 bytes
Saturation Bit Enabled +44 bytes
FPU runtime ON / OFF +232 bytes
0S_ATOLLIC REENT < 0 +20 bytes
0S_ATOLLIC REENT > 0 +8 bytes

Rev 1.2

Page 32

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its
own data memory to operate, and second, most of the services offered by the RTOS require data memory
for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on Code Time Technologies
website.

7.2 Latency

Latency of operations has been measured on an Olimex STM32-P407 Evaluation board populated with a
168 MHz STM32F407 device. The clock setting for the measurement used the internal oscillator operating
at 16 MHz, which allows running from the flash with O wait states. All measurements have been
performed on the real platform. This means the interrupt latency measurements had to be instrumented to
read the sysTick counter value. This instrumentation can add up to 5 or 6 cycles to the measurements.
The code optimization settings that were used for the latency measurements are:

1. Optimization Level: Optimize for size (-0s)
Enabled
Enabled

All other options are disabled, as they do not affect the efficiency of the code generated.

2. Prepare dead code removal:

3. Prepare dead data removal:

E] Properties for Demo_1_ATOLLIC

(= [|

Settings = =

-

Resource

Builders

C/C++ Build
Build Variables
Discovery Options
Environment
Logging

Configuration: Debug [Active] = | [Manage Configurations...

€ Target Settings | & Tool Settings |.ﬁ' Build Steps |

Build Artifact | Binary Parsers I @ Ermor Parsers|

Settings

Tool Chain Editor
C/C++ General
Project References
Review
Run/Debug Settings
Task Repository
Testing
WikiText

iy Assembler Optimization Level [th\rmze for size (-Os)

(2 Target

(2 General

(2 Symbols

(22 Debugging

(22 Miscellaneous

(2 Directories
3 C Compiler

@ Target

@ General

@ Symbols

@ Directories

@ Optimization

@ Debugging

@ Warnings

(2 Miscellaneous
B C Linker

(2 Target

(2 General

(2 Libraries

(22 Optimization

(2 Miscellaneous
i3 Other

(22 Reports

 Output format

Prepare dead code removal
Prepare dead data removal

[Restore Defaults I

I Apply]

(TR

Cancel]

Figure 7-2 Latency Measurement Code Optimization Settings

Rev 1.2

Page 33

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very
good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three
tasks were involved:

1. Adam & Eve set to a priority value of 0;
2. Alow priority task set to a priority value of 1;
3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a
mailbox. The first 2 latency measurements use the component in a manner where there is no task
switching. The third measurements involve a high priority task getting blocked by the component. The
fourth measurements are about the opposite: a low priority task getting pre-empted because the component
unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,
through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component
is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-4 Measurement without Task Switch

Start CPU cycle count
SEMpost (..); or EVTset(..); or MBXput();
Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right
before the component is used until it is back from the component. For these measurement there is no task
switching. This means:

Table 7-5 Measurement without Blocking

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

Rev 1.2 Page 34

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The third set of measurements counts the number of CPU cycles elapsed starting right before the
component triggers the unblocking of a higher priority task until the latter is back from the component used
that blocked the task. This means:

Table 7-6 Measurement with Task Switch

main ()

{

SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

}

TaskPriol ()
{

Start CPU cycle count
SEMpost (..) ; or EVTset(..); or MBXput(..);

The forth set of measurements counts the number of CPU cycles elapsed starting right before the
component blocks of a high priority task until the next ready to run task is back from the component it was
blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-7 Measurement with Task unblocking

main ()

{

Start CPU cycle count

SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
}
TaskPriol ()
{

SEMpost (..) ; or EVTset(..); or MBXput(..);

Stop CPU cycle count

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt
using the component, until the task that was blocked becomes the running task and is back from the
component used that blocked the task. The interrupt latency measurement includes everything involved in
the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the
interrupt code. The interrupt function, attached with 0sisrInstall (), is simply a two line function that
uses the appropriate RTOS component followed by a return.

Table 7-8 lists the results obtained, where the cycle count is measured using the sysTick peripheral on the
Cortex-M4. This timer decrements its counter by 1 at every CPU cycle. As was the case for the memory
measurements, these numbers were obtained with a beta release of the RTOS. It is possible the released
version of the RTOS may have slightly different numbers.

Rev 1.2 Page 35

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR
function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt
stack and branch to the address specified in the interrupt vector table. But for this measurement, the
STM32F407 Systick Timer is used to trigger the interrupt and measure the elapsed time. The latency
measurement includes the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used
between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in
the 0SisrInstall(). The interrupt overhead when entering the kernel is calculated using the results
from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU
cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization
component.

The hybrid interrupt stack feature was not enabled, neither was the saturation bit, in any of these tests.
When the FPU is on, the runtime FPU ON / OFF feature of Abassi is not enabled. The library re-entrance
and multi-thread protection are not enable.

In the following two tables, the latency numbers between parentheses are the measurements when the build
option 0S_SEARCH ALGO is Set to a negative value. The regular number is the latency measurements when
the build option 0s_SEARCH ALGO is setto 0.

Table 7-8 Latency Measurements FPU OFF

Description Minimal Features Full Features
Semaphore posting no task switch 118 (128) 201 (205)
Semaphore waiting no blocking 122 (131) 210 (216)
Semaphore posting with task switch 182 (209) 317 (341)
Semaphore waiting with blocking 199 (208) 352 (355)
Semaphore posting in ISR with task switch 367 (395) 506 (528)
Event setting no task switch n/a 198 (205)
Event getting no blocking n/a 218 (223)
Event setting with task switch n/a 330 (357)
Event getting with blocking n/a 368 (371)
Event setting in ISR with task switch n/a 521 (546)
Mailbox writing no task switch n/a 249 (256)
Mailbox reading no blocking n/a 257 (265)
Mailbox writing with task switch n/a 363 (388)
Mailbox reading with blocking n/a 411 (416)
Mailbox writing in ISR with task switch n/a 563 (585)
Interrupt Latency 35 35
Interrupt overhead entering the kernel 185 (186) 189 (187)
Interrupt overhead NOT entering the kernel 56 56

Context switch 35 44

Rev 1.2 Page 36

Abassi RTOS

Port — ARM Cortex-M4 — Atollic

2012.06.02

Table 7-9 Latency Measurements FPU ON

Description Minimal Features Full Features
Semaphore posting no task switch 118 (128) 201 (205)
Semaphore waiting no blocking 122 (131) 210 (216)
Semaphore posting with task switch 226 (253) 361 (385)
Semaphore waiting with blocking 243 (252) 396 (399)
Semaphore posting in ISR with task switch 439 (467) 578 (600)
Event setting no task switch n/a 198 (205)
Event getting no blocking n/a 218 (223)
Event setting with task switch n/a 374 (401)
Event getting with blocking n/a 412 (415)
Event setting in ISR with task switch n/a 593 (618)
Mailbox writing no task switch n/a 249 (256)
Mailbox reading no blocking n/a 257 (265)
Mailbox writing with task switch n/a 407 (432)
Mailbox reading with blocking n/a 455 (460)
Mailbox writing in ISR with task switch n/a 635 (657)
Interrupt Latency 47 47
Interrupt overhead entering the kernel 213 (214) 217 (215)
Interrupt overhead NOT entering the kernel 88 88

Context switch 81 90

Rev 1.2

Page 37

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 2 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO_MIN 2 /* Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 0 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_ STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.2

Page 38

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02
8.2 Case 1: + Runtime service creation / static memory
Table 8-2: Case 1 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 2 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */
#define OS_PRIO SAME 0 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.2

Page 39

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02
8.3 Case 2: + Multiple tasks at same priority
Table 8-3: Case 2 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = O0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.2

Page 40

Abassi RTOS

Port — ARM Cortex-M4 — Atollic

2012.06.02

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE_RUN_MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

O OO OOk Uk Ul OO OO0 O0OO0OHFHFORFRPNREF OOF O WOOoOOoRrR OoOOoOo

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

When !'=0,
When O:

when non-zero:

RTOS supplied OSalloc
pre-emptive,

If event flags are supported
Allow the use of 1lst come lst serve semaphore

If IdleTask supplied & if so,
Type of logging to use
If mailboxes are used

stack size

Maximum number of requests in ISRs
This test validates this
To enable protection against priority inversion */

!= 0 when named Tasks / Semaphores / Mailboxes

If operating with nested interrupts
If a task priority can be changed at run time

Max priority,

Idle

0S_PRIO MIN, AdameEve = 0

Support multiple tasks with the same priority

Use round-robin,

value specifies period in uS

*/

cooperative */

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

If create Task / Semaphore / Mailbox at run time */

If using a fast search

Priority threshold for starving protection

Maximum Timer Tick for starving protection
Maximum time on hold for starving protection

when OS STATIC MBOX != 0,

of buffer element

If !'=0 how many mailboxes

If named mailboxes/semaphore/task,

If !=0 how many semaphores and mutexes
if !'=0 number of bytes for all stacks

If !'=0 how many tasks

(excluding A&E and Idle)

If a task can suspend another one

!'=0 enables blocking timeout

!'=0 gives the timer callback period

!'=0 includes the timer services module

!=0 enables timer & specifies the period in uS

If tasks have arguments

*/
*/
*/
*/
*/
*/

size in char */

*/
*/
*/
*/
*/
*/
*/
*/
*/

Rev 1.2

Page 41

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02
8.5 Case 4: + Timer & timeout / Timer call back / Round robin
Table 8-5: Case 4 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.2

Page 42

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02
8.6 Case 5: + Events / Mailboxes
Table 8-6: Case 5 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !'=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.2

Page 43

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02
8.7 Case 6: Full feature Build (no names)
Table 8-7: Case 6 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 100 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !'=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.2

Page 44

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02
8.8 Case 7: Full feature Build (no names / no runtime creation)
Table 8-8: Case 7 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of 1lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.2

Page 45

Abassi RTOS Port — ARM Cortex-M4 — Atollic 2012.06.02
8.9 Case 8: Full build adding the optional timer services
Table 8-9: Case 8 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 100 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !'=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 1 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.2

Page 46

