CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document
ARM Cortex-M4 — IAR

Copyright Information

This document is copyright Code Time Technologies Inc. ©2012-2013. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

IAR Embedded Workbench is a trademark owned by IAR Systems AB. ARM and Cortex are registered trademarks of ARM Limited.
All other trademarks are the property of their respective owners.

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

1

~N o o1 B~

Table of Contents

INTRODUGCTION ..ottt ettt e e ettt e s ettt e e s ebb e e e s eabeeessabeseesbeesssssbaesesbasessssbesesssbensesan 6
1.1 DISTRIBUTION CONTENTS tittiiiiiiittttitieessiiittttttteesessiisbssteessssssssbsssessssssassssssssesssssssbssssesssssisssrssssssesss 6
O 1Y T - 1 L] TSR 6

TARGET SETUP oot ettt ettt ettt ettt e e s et et e e sttt e e sbat e e s ebbaeessabbeessbaseesssbenessabensesaes 7
2.1 OS _STACK SIZE SET-UP ...oiiuiiitieitt ettt ettt ste e ste e te st s b e s ta e baebeesaesteestaesbeesteenteeneesneesteesreens 7
2.2 INTERRUPT STACK SET=UP ..utiiiiiitiiieiitiie e ettt e e s ettt e s stte e s s ettaessasaessssbaessaasbesesssbasessbeesssssbesssssaesssssrens 9
2.3 SATURATION BIT SEToUP ..ottt ettt ettt e et e e s et e s s bt e e s e sab e e e s eabee e s s bbe e s sabbbeeesabeeeessnees 10
A e IR = 11
S T |V, L6 217 Y 01N 13

R Y0 R = (= 1= 01 =Y g (o1 d 0] (=T £ 0] o I 13

2.5.2 Full Multithreading ProteClioN..........ccoveiiii it 14

2.5.3 Partial Multithreading ProteCtion ..ot 15

INT ERRUP TS ittt ettt ettt e sttt e e s ettt e e s et et e e saaeeesasbeeesaabeeeesbbeeesasbbesesbaseessabeeesareeeeins 17
3.1 INTERRUPT HANDLING ...veieiittiie sttt e sttt e e ettt e s e teteestteessesteeessabasessbaeessasbeeessabaseesbaeeessbbeeesseesessanes 17

3. L1 INErTUPE TADIE SIZE .eieiieieiecec bbb et 17

312 INErTUPL INSTAIIET .ot 19
3.2 INTERRUPT PRIORITY AND ENABLINGcotiittttiieeeetiiittii e e e e s s eeittttee s e e s s sstbbbbessesssssbbtbesesesssssssbeeseeens 20
3.3 FAST INTERRUPTS ettt it ittt ettt e e ettt e e e e e s s bbbt e e e e e e s e b bbbt e e e e e s s e bbb b b e e s e e e s e ebb b b e e s eeessasabbbeeeeeeas 20
3.4 NESTED INTERRUPTS ...ciiiittttiieeiiiiittttie e e e e s sibbbatessessssbbbaaeeseesssbbbbbeeseessaabb bbb eeseessaasbbbbeeseesssabbbbeeeeeeas 23

STACK USAGEt s e e et e e s e et e s s e b e e e s st b e e s sbbeesssbbaeesasbeeeeans 24

] N RO I I 1T 25

(OF L1 U1 =T = SR 28

IMEASUREMENTS ..ottt ettt et ettt e e st e e s ettt e s et et e e s bt e e e sasbeeeseabaeeessabeeessbbeeesanreeessanes 29
B0 R Y/ 1 =11V, = 2T 29
A I 1 =1 N[O 270 TR 31

APPENDIX A: BUILD OPTIONS FOR CODE SIZEoooioeeee ettt 36
8.1 CASE 0: IMINIMUM BUILD .vvviiiiiiiiiittieiieee e e s sttt e e e e e s setbtteeaeesssssbbeteaseesssssbasaessesssassbbasesseesssasssrrasseess 36
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORYuveieeiitiieeserieesseieieessiresesseaneessesneeessanes 37
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY .oiiiiiiiititiieeeeiiiiiirieeeeessssinsiesseesssssnssessesssssssnssssssess 38
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPENDccccvvvvieeivieeeenne 39
8.5 CASE4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBINcccoitviieiiiiiee ittt 40
8.6 CASEB5: + EVENTS/ IMAILBOXESceeiiutiieeiittiee sttt e s sttee s s ettt s e s eatatessibtsesssstassssabtaeessabesssssbaesssbensessanns 41
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...c.uiitiitieieaieiesiestesiestesieeeesesaesteseesbesseensesaesseseesnessesneans 42
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION)cvtiuirieniinieeiieieneenie e seesneans 43
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...vvvviiieeiiiiiriiieieessseiirieeseesssssnsneeseees 44

Rev 1.9 Page 3

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

List of Figures

FIGURE 2-1 PROJECT FILE LIST woiiitiiiitii ittt ctte et e stee et e st e st e e ste e s ste e e stee s teeenbaesstaesnbaessbeeenbeesstneenbeessteeenseeesees 7
FIGURE 2-2 GUI SETOF OS_STACK ST ZE .cciiiiiiiiiiiiiiiic bbb s 8
FIGURE 2-3 GUI SETOF OS_ ISR_STACK ettt bbb bbb 9
FIGURE 2-4 GUI SET OF SATURATION BIT CONFIGURATIONccivtiitieiteeiteesreesiteesreestessseesssessssesssessnnessnns 10
FIGURE 2-5 GUI ENABLING OF THE FPU ...ttt sttt ettt st e baesnne e teennne e 11
FIGURE 2-6 GUISETOF OS_FPU_ON_OFF .ottt bbb 12
FIGURE 2-7 MULTITHREAD-SAFE PROJECT FILE LIST ..viiiiiiiitie ettt e sttt e 14
FIGURE 2-8 FULL MULTITHREAD PROTECTION GUI CONFIGURATIONccvviiiieiiiiesieesteesveesireesneesteesnneesnns 15
FIGURE 3-1 GUI SETOFOS N INTERRUPTS ..ot 18
FIGURE 3-2 GUI SETOF OS N INTERRUPTScceitititiiiiiiiiiitste ettt 19
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...cciittreeeiiieeecireeesitteeeestveeesneeeesnnveeas 29
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGScciveeeiitieeeeiteeeesitreeeeerieeeeireeeesenveees 31

Rev 1.9 Page 4

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

List of Tables

TABLE 1-1 DISTRIBUTION ..vtiiiteiitteiiteeiteeeiteesteesssesassseassesasesassessssssassessssssessesssssesssesesssessssesssesssssesssessseessnes 6
TABLE 2-1 0S_ STACK STZE ittt bbb bbb 7
TABLE 2-2 COMMAND LINE SETOF OS_ STACK SIZE..ciiiiiiiiiiiiiiiiieietiieieieiee ettt 8
TABLE 2-30S ISR STACK..iiiiiiiitiiiiiii ittt bbb bbb bbb bbb 9
TABLE 2-4 COMMAND LINE SETOF OS_ ISR STACK wcueuiiiiiiiiiiiiieie ittt bbb 9
TABLE 2-5 SATURATION BIT CONFIGURATIONuvtiiiiitiieeiittieeeeteeeesetteeeeettteeeetaeeesetaeeessssaesesnssesesssseeessseeeens 10
TABLE 2-6 COMMAND LINE SET OF SATURATION BIT CONFIGURATION.......cceciiiiiieeiitieeeecitieeeeeireeessireeeeevveeens 10
TABLE 2-7 COMMAND LINE ENABLING OF THE FPUooiiiiiic ettt 11
TABLE 2-8 FPU RUN TIME ON / OFF CONFIGURATION ...veiiitiiiiteeirieiiteeeteesireessesasesssessnsessressssesssssssnsesssses 12
TABLE 2-9 COMMAND LINE SETOF OS_FPU_ON_OFF ittt 12
TABLE 2-10 FULL MULTITHREAD PROTECTION COMMAND LINE CONFIGURATIONcvceevieeirieeciees e envee e 14
TABLE 2-11 SETTING A TASK TO BE MULTITHREAD SAFEvviiiiiteieeiitieeeeetteeeeiteeeesetteeessttaeesetsesesisresessseeeenns 15
TABLE 3-1 ABAssTI CORTEXM4 ISR.S INTERRUPT TABLE SIZINGcccceciiiiiiiiiiiiiiicsiien i 17
TABLE 3-2 COMMAND LINE SET THE INTERRUPT TABLE SIZE......cuutiiiiieeeeiiieeesieee e s stteeeesiveeesnnseeessnneesssssneeenns 18
TABLE 3-3 OVERLOADING THE INTERRUPT TABLE SIZING FOR ABASSLC ...vviiiiiieeeiitieeeeciieeesireeessiveeessnneeeans 18
TABLE 3-4 ATTACHING A FUNCTION TO AN INTERRUPTcttiiiectiee e sitiee e s sttte e e sitaeeesnnaeeessstaeessnsneeessnneesssnsnneesns 19
TABLE 3-5 INVALIDATING AN ISR HANDLER.......cutttitiititteeiieeeesieeeesitteeeasttaeeestaeeessnaeeasssseeeesssesessssnsessseneenns 20
TABLE 3-6 DISTRIBUTION INTERRUPT TABLE CODE-.......ceeeiitiieeiitreeeiitieeeeeteeeeeiteeeesitaeeesssseessasssessssssesesssseesenns 21
TABLE 3-7 STM32F407 USART 1/ 2 FAST INTERRUPTSvviiitiiitieiteeireeeiteesteseteesbesstessbessbessbassnresssveas 21
TABLE 3-8 FAST INTERRUPT WITH DEDICATED STACK ..eeiiitiiieiiteeeeiitteeeeettteeeeteeeesetteeesssbaeessssesessaresesanseeeeans 22
TABLE 3-9 REMOVING INTERRUPT NESTINGeeeiiteeeeitteeeeittieeeeteeeesetreeesassteesssessssissesssssssesssassesssssesssssseesenns 23
TABLE 3-10 PROPAGATING INTERRUPT NESTINGccciiittieeiittieeeeteeeeiitreeesettreessseeeesesseessssssesessssesesisesesssseesesns 23
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS 11vviiiiiiiiittttiieeeesiiibssieeeesssiitsasseessssssssssssesssesssssssssssssesssnnns 24
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ...uttiiitiieeeitiieeeiiee e e sitteeessitaeeesteeeesnnaeeeasssaeessssesessnsesssssseeeenns 26
TABLE 7-1 “C” CODE MEMORY USAGE ...ccciittiiiiiiiii e eitiee e sttt e e ette e e s itte e e e sttae e s sataee e s saaaeaesstaaeesnsesesssseeesasseeeesns 30
TABLE 7-2 ASSEMBLY CODE MEMORY USAGEcciiiitiieeiiiiiie ettt e e sittee e s sttae e e stee e e s itve e e s sttae e s snsasessnneeeesnsneeeans 30
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH .. .uitiiiiiiiiiciiee e sittee e e sttt e e stee e s stae e e s sttaeessnnneeessnseeeesnseeeeans 32
TABLE 7-4 MEASUREMENT WITHOUT BLOCKINGcoutiiieiiiiiie ettt e e citiee e e sttt e e e stae e e s stveeessnbaeessnseeessnneeeesnnneeeans 32
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ...vviiiitiieeicitieeeetee e cetee e e ettt e e etee e e s etaeeeeentaeeeeeateeessareeesanseeeeans 32
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKINGcccecuviieeeteeeeeetteeeeeteeeeeseeeesesaeeesesseeesessesesisseeessseesesns 33
TABLE 7-7 LATENCY MEASUREMENTS FPU OFF ...ttt e 34
TABLE 7-8 LATENCY MEASUREMENTS FPU ONooiiiiiii ettt e eavee e 35
TABLE 8-1: CASE O BUILD OPTIONSuttieeiittieeeeiteeeeeitreeeaetteeeeasaesesesseseaassssessasesessessesssssseeessassesessssesesssseesesns 36
TABLE 8-2: CASE L BUILD OPTIONSutveeeeitteeeeeteeeeseteeeesesteeeeesaesesesseeeaasseeessaseseesasseseasssseessassesessssesesasseesesns 37
TABLE 8-3: CASE 2 BUILD OPTIONSciutteieeittteeeitteeesitteeesssteeesssssassasseseaassseesasssesssssssesssssessssssssssssesesssssseenns 38
TABLE 8-4: CASE 3 BUILD OPTIONScciutteieiittteeeiteeeesitteeesstteeesasssassasseseaasssesssssssessassssesssssesssnssssesssesesssssseenns 39
TABLE 8-5: CASE 4 BUILD OPTIONSccutteieiitteeeeittreesitteeesasteeesssasessassessaassseessssssesssssssesssssesssnssssssssesesssssseenns 40
TABLE 8-6: CASE 5 BUILD OPTIONScutttieeititeeeiteeeesitreeeastteeesssssessisseesaasssessassssessassssesssssessssssssssssssesssssseenns 41
TABLE 8-7: CASE 6 BUILD OPTIONScuttiieiittteeeitteeesitteeeasttteesasesassassesesasssesssasssessassseesssssesssnsessesssssesasseeeeans 42
TABLE 8-8: CASE 7 BUILD OPTIONSuvtieeiitteeeeeiteeeeeiteeeeaesseeeessssssssesaessasssseessssssessasssesassseesssssssssssssesesssseseesns 43
TABLE 8-9: CASE B BUILD OPTIONSuvvieeietteeeeireeeeeiteeeeaesteeeeasssssssessessassseesssssesessesesesassseesssssssssssssesesssseesesns 44

Rev 1.9 Page 5

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

1 Introduction

This document details the port of the Abassi RTOS to the ARM Cortex-M4 processor. The software suite
used for this specific port is the IAR Embedded Workbench for ARM, more commonly known as
EWARM; the version used for the port and all tests is Version 6.30.11.2079.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:;

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_CORTEXM4_IAR.s RTOS assembly file for the ARM Cortex-M4 to use with
the IAR Embedded Workbench

Abassi_ IAR MTX_IF.c Abassi interface functions for multithread-safe operation of
the IAR DLIB.

Demo 0 STM32 P407 IAR.c | Demo code for the Olimex STM32-P407 evaluation board
Demo 2 STM32 P407 IAR.c | Demo code for the Olimex STM32-P407 evaluation board
Demo 3 STM32 P407 IAR.c | Demo code for the Olimex STM32-P407 evaluation board
Demo_4 STM32 P407 IAR.c | Demo code for the Olimex STM32-P407 evaluation board

Demo_6_STM32_ P407_TIAR.c | Demo code for the Olimex STM32-P407 evaluation board

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

To optimize reaction time of the Abassi RTOS components, it was decided to require the processor to
always operate in privileged mode (which is the default start-up mode for Cortex-M microcontrollers) and
to always use the main stack pointer (MSP). The start-up code supplied in the distribution fulfills these
constraints and one must be careful to not change these settings in the application.

The svcall interrupt (interrupt number -5 / interrupt vector number 11) is not available as it is reserved for
the OS, and the Abassi RTOS uses it.

Rev 1.9 Page 6

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

2 Target Set-up

Very little is needed to configure the IAR Embedded Workbench development environment to use the
Abassi RTOS in an application. All there is to do is to add the files Abassi.c and
Abassi CORTEXM4 IAR.s in the source files of the application project, and make sure the five
configuration settings in the file Abassi CORTEXM4 IAR.s (0S_STACK SIZE described in Section 2.1,
0S_ISR_STACK described in Section 2.2, 0s HANDLE PSR ¢ described in Section 2.3, 0S_FPU _ON OFF
described in Section 2.42.3, and 0s N INTERRUPTS described in Section 3.1.1) are set according to the
needs of the application. As well, update the include file path in the C/C++ compiler preprocessor options
with the location of Abassi.h. There is no need to include a start-up file, as the
Abassi CORTEXM4 IAR.s file contains all the start-up operations, including the interrupt table and
default exception handlers.

File Edit View Project Simulator Tools Window Help

D@ d & | |
Workspace

x
[Relzaze b]

Fileg A
Sl |Demo_1_STM32_P407_IAR - Release*| v | |
[Abassic x
F— [kl Abassih

ismAhassi_CORTEMMA_IAR. s *
L@ (3 Output

| Demo_1_5TM3z_P407_I4R

Ready

Figure 2-1 Project File List

2.1 OS_STACK_SIZE Set-up

The file Abassi CORTEXM4 IAR.s contains the start-up code for “C” applications built with the IAR
Embedded Workbench for the ARM that use the Abassi RTOS. There should be no other start-up file
included in the project.

There is a definition used to set-up the stack size for the function main (), which is the highest priority task
at start-up (known in Abassi as Adam&Eve). This definition is located at around line 30 in the
Abassi CORTEXM4 IAR.s file and is shown in the following table:

Table 2-1 0s_STACK_SIZE

#ifndef OS_STACK SIZE
OS_STACK_SIZE EQU 1024 ; A&E (main) stack size in bytes / Set-up to your needs
#endif

A stack size of 1024 bytes is the value set in the distribution code; modify this value according to the needs
of the application. If the value of os_sTack s1zk is set to 0, then the stack size reserved is the one
specified in the linker configuration file.

Rev 1.9 Page 7

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

Alternatively, it is possible to overload the 0s sSTACK SIzE value set in Abassi CORTEXM4 IAR.s by
using the assembler command line option -p and specifying the desired stack size as shown in the
following example, where the stack size is set to 512 bytes:

Table 2-2 Command line set of 0S_STACK_SIZE

iasmarm .. -DOS_STACK SIZE=512 ..

When 0s_STACK_SIZE is set to a value of zero, the stack for main () uses the specification from the linker
configuration file.

The stack size can also be set through the GUI, in the “Assembler / Preprocessor” menu, as shown in the
following figure:

Categony: Factory Settings

General Options
C/C++ Compiler
Assembler
Qutput Converter | Language | Output | List | Preprocessor | Diagnostics I Extra Options |
Custom Build
Build Actions [lgnore gtandard include directories
Linker
Debugger

Simulator Additional include directories: (one per line)
Angel

GDE Server

IAR ROM-manitor
J-Link/1-Trace

TI Stellaris
Macraigor

PE micro 0S5_STACK_SIZE=512
RDI

ITAGjet

STLINK
Third-Party Driver
TI XD5100

Defined symbols: jone per line)

Ok] [Cancel

Figure 2-2 GUI set of 0S_STACK_SIZE

Rev 1.9 Page 8

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

2.2 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an
application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate
extra room to the stack of every task in the application to handle the interrupt nesting. This feature is
controlled by the value set by the definition os 1sr_sTack, located around line 35 in the file
Abassi CORTEXM4 IAR.s. To disable this feature, set the definition of os ISR STack to a value of
zero. To enable it, and specify the interrupt stack size, set the definition of 0s_ISr_STACK to the desired
size in bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid
stack feature is enabled and a stack size of 1024 bytes is allocated; this is shown in the following table:

Table 2-3 0s_ISR_STACK

#ifndef OS ISR STACK
0S ISR STACK EQU 1024 ; If using a dedicated stack for the nested ISRs
#endif ; 0 1f not used, otherwise size of stack in bytes

Alternatively, it is possible to overload the 0s Isr_STACK value set in Abassi CORTEXM4 IAR.s by
using the assembler command line option -D and specifying the desired hybrid stack size as shown in the
following example, where the hybrid stack size is set to 512 bytes:

Table 2-4 Command line set of 0S_ISR_STACK

iasmarm .. -DOS_ISR STACK=512 ..

The hybrid stack size can also be set through the GUI, in the “Assembler / Preprocessor” menu, as shown
in the following figure:

| Options for node "Demo.

Categany: Factany Settings

General Options
C/C++ Compiler
Assembler
Output Converter | Language | Cutput | List | Preprocessor | Diagnostics I Bxtra Options |
Custom Build
Build Actions |:| Ignore gtandard include directories
Linker
Debugger

Simulatar Addttional include directories: (one per ling)
Angel

GDE Server

IAR. ROM-manitor
J-Link/1-Trace

TI Stellaris
Macraigor

FE micro QS _ISR_STACK=512
RDI

TTAGjet
STLINK
Third-Party Driver
TI ¥D5100

Defined symbols: {one per ling)

[0K] [Cancel

Figure 2-3 GUI set of 0s_ISR_STACK

Rev 1.9 Page 9

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

2.3 Saturation Bit Set-up

In the ARM Cortex-M4 status register, there is a sticky bit to indicate if an arithmetic saturation or
overflow has occurred during a DSP instruction; this is the Q flag in the status register (bit #27). By
default, this bit is not kept localized at the task level, as it needs extra processing during a context switch to
do so; instead, it is propagated across all tasks. This choice was made because most applications do not
care about the value of this bit.

If this bit is relevant for an application, even in a single task, then it must be kept locally in each task. To
keep the meaning of the saturation bit localized, the token 0s HANDLE PSR @ must be set to a non-zero
value; to disable it, it must be set to a zero value. This is located at around line 40 in the file
Abassi CORTExM4 IAR.s. The distribution code disables the localization of the Q bit, setting the token
0OS_HANDLE PSR 0 to zero, as shown in the following table:

Table 2-5 Saturation Bit configuration

#ifndef OS_HANDLE PSR Q
OS_HANDLE PSR Q EQU 0 ; If we keep the Q bit (saturation) on per tasks
#endif

Alternatively, it is possible to overload the 0s HANDLE PSR ¢ value setin Abassi CORTEXM4 IAR.s by
using the assembler command line option -D and specifying the desired setting with the following:

Table 2-6 Command line set of Saturation Bit configuration

iasarm .. -DOS HANDLE PSR Q=0 ..

The saturation bit configuration can also be set through the GUI, in the “Assembler / Preprocessor” menu,
as shown in the following figure:

[Options for node "Demo_1 STM32_P407 [AR

Categony: Factary Settings

General Options
C/C++ Compiler
Qutput Converter
Custom Build
Build Actions [Ignere standard include directories
Linker
Debugger

Simulator Additional include directories: (one per ling)
Angel

GDE Server

IAR. ROM-monitor
Jink/1-Trace

TI Stellaris
Macraigor

FE micro 0S5_HANDLE_PSR_G=0
RDI

ITAGjEt

STALINK
Third-Party Driver
TIXD5100

Defined symbols: (one per line)

Figure 2-4 GUI set of Saturation Bit configuration

Rev 1.9 Page 10

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

2.4 FPU set-up

The assembly file Abassi CORTExXM4 IAR.s, depending on its configuration, handles three different
types of FPU use. They are:

» The FPU is always disabled
» The FPU is always enabled
» The FPU is turned on and turned off during runtime

The file Abassi CORTExM4 IAR.s is aware of the enabling or disabling of the FPU by the compiler
through the use of the 1AR build definition arvvrp , automatically defined when the assembler is
configured to enable the FPU instructions. There are two ways to configure the assembler to support the
FPU instruction. This is done on the command line with the option --fpu:

Table 2-7 Command line enabling of the FPU

iasarm .. ——fpu=VFPv4 ..

The enabling of the FPU can also be performed through the GUI, in the General Options / Target menu, by
setting the FPU to a value different than None.

Options for node "Demo_1_STM: S

Category:

[Generaioptons |
C/C++ Compiler
Assembler
Output Converter Target | Qutput | Library Configuration | Library Options | MISRAC:200/ + | *
Custom Build
Build Actions
Linker
Debugger ® Core Cortex-M4
Simulator
Angel @ Device ST STM32F407ZG
GDE Server
IAR ROM-manitor

J-Link/1-Trace)
TI Stellaris Endian mode FPU

PE micro Big

RDI BE

ITAGjet _

STLINK @EE

Third-Party Driver
TI XD5100

Processor variant

[Ok] [Cancel

Figure 2-5 GUI enabling of the FPU

When the FPU is enabled, each task can use a different configuration of the FPU (through the Fpcsr
register), as the contents of this register are part of the task context save. All tasks upon start will have their
local Fpcsr value set according to the value of FpCSR register upon calling osstart (). This means if the
application globally requires a different setting of the FPU than the default set by the compiler, the Fpcsr
must be modified before calling osstart ().

Rev 1.9 Page 11

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

It is also possible to turn on and turn off the FPU during runtime, and the ON / OFF setting is also kept on a
per task basis. This means the FPU can be enabled in a set of tasks when it is not for the other tasks in the
application. All tasks, upon start, will inherit the same ON / OFF state of the FPU as when osstart ()
was called. When this feature is required, the build option 0s_rFpu_on_oFrF definition, located around line
50 in the file Abassi CORTExM4 IAR.s, must be setto a non-zero value. The distribution code does not
enable the capability of turning the FPU ON and OFF during runtime, setting the token 0s_FpPU_ON_OFF t0
zero, as shown in the following table:

Table 2-8 FPU run time ON / OFF configuration

#ifndef OS FPU ON OFF
0S_FPU ON OFF EQU 0 ; If the FPU can be turned ON/OFF during runtime
#endif

Alternatively, it is possible to overload the 0s FPU ON OFF value set in Abassi CORTEXM4 IAR.s by
using the assembler command line option -D and specifying the desired setting with the following:

Table 2-9 Command line set of os_FPU_ON_OFF

iasmarm .. -DOS FPU ON OFF=1 ..

The indication the FPU is turned on and off during runtime can also be set through the GUI, in the
“Assembler / Preprocessor” menu, as shown in the following figure:

Options for nede "Demo_1_STM: |t

Categary: Factony Settings

General Options
C/C++ Compiler
Assembler
Output Converter | | | Language | Output | List | Preprocessor | Diagnostics | Exra Options |
Custom Build
Build Actions [lanare standard include directories
Linker
Debugger

Simulater Additional include directories: (one per ling)
Angel

GDB Server

IAR ROM-monitor
J-ink/1-Trace

TI Stellaris
Macraigor

PE micra QS_FPU_ON_OFF=1
RDI

JTAGjet

ST-LINK
Third-Party Driver
TI ¥D5100

Defined symbols: jone per line)

Figure 2-6 GUI set of 0s_FPU_ON_OFF

Rev 1.9 Page 12

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

There are a two requirements to fulfill when the FPU is turned on and off during runtime. The first one,
which is not related to the RTQOS, but is a restriction by the Cortex-M4 core, is to never have a different
enable setting of the FPU between the entry and the exit of an ISR. This means that turning ON and then
OFF the FPU in an interrupt is safe. But turning it ON without turning it OFF before exiting the interrupt
will crash the application. If the FPU is ON upon entry in the interrupt, and it gets turned OFF in the
interrupt without being turned back ON, will trigger an access fault exception. If the FPU is turned ON and
OFF in an interrupt, be aware the above stated condition may not be respected with nesting of interrupts.

The second requirement when the FPU is turned ON and OFF during runtime is that it is necessary to set
the svcall (Service call exception vector #11, interrupt #-5) priority to the highest level. This is
configured in the System Handler Priority Register 2 (SHPR2) register. If this register is not modified, then
at start-up the priority of the svcal1l exception is set to the higher level.

NOTE: When the FPU is turned OFF in a task, the setting of the FPCSR will quite likely to be set back to
the task start-up value upon turning ON the FPU afterward.

2.5 Multithreading

By default, the IAR DLIB runtime library is not multithread safe. There are two aspects to take into
account when protecting the library for multithreading. The first one involves reentrance; some library
functions are not reentrant, therefore two tasks accessing the same non-reentrant function at the same time
can create major issues. The classic example of non-reentrant functions are the family of functions for
dynamic memory allocation: e.g. malloc () and free (). As they internally use a static buffer, a few
pointers, and some linked lists, if two tasks use functions that access the internals of the dynamic memory
allocation at the same time, corruption could occur. Protecting the non-reentrant functions is
straightforward: all there is to do is to make sure there is only a single task that can access the non-reentrant
functions at any time. This is done with a mutex, as it is the perfect mechanism to guarantee exclusive
access to a resource.

The second type of functions and variables that are not multithread safe are due to internal data used by the
library, data that is truly a global resource. Examples of these are: the errno variable or the 1ocale
information; these are called TLS (Thread Local Storage) by IAR. The only efficient way to protect these
functions and variables against multithreading is to have the library configured to use a unique sets of
variables for each task. There are multiple ways to implement the data access or swapping, but
fundamentally, if the library does not provided such a dedicated mechanism, it becomes cumbersome to
solve the issue, as it would require a manual swap of the each individual internal static variable of the
library at every task switch.

More detailed information on what functions require re-entrance protection and which global variables
require multi-threading protection can be found in the IAR EWARM Development Guide, in the section
titled “Multithread Support in the DLIB Library”.

The IAR DLIB library fully support both mechanisms to make the library multithread safe. The following
sub-sections describe how to make each of the two libraries multithread safe.

2.5.1 Reentrance Protection

Reentrance protection is achieved by giving access to mutexes to the library. The DLIB reentrance
protection requires a specific APl and these custom APl modules are provided in the file
Abassi IAR MTX IF.c, which is part of the distribution. All there is to do to protect the DLIB against
reentrance is to add the file Abassi IAR MTX IF.c inthe project.

Rev 1.9 Page 13

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

Eile Edit View Project Simulator Tools Window Help

De@d & | |
Workspace

x
[Release -]

Fileg i By
Ela]Demo_1_STM32_P407_IAR - Release*| v | |
Bl Abassic .
F— [kl Abassih

fanAbassi_CORTEXMA_IAR s .
Ahassi_lAR_MTY_IF.c .
L@ (1 Output

| Dema_1_STM32_P407_IA4R

Ready

Figure 2-7 Multithread-safe Project File List

2.5.2 Full Multithreading Protection

For full multithreading of the library, all there is to do is to define for the compiler the build option
0S_IAR MTHREAD With a positive value. Setting oS IAR MTHREAD to a positive value does two things.
The first change is to insert a custom function that provides the address of the global variables associated to
the running task. Then, any time a TLS variable is accessed, either directly in the task, or internally by the
library, it is the task’s TLS being accessed. The second change occurs during task creation, where there is
an allocation of memory through the component csalloc () in order to hold one set of TLS for every task.

NOTE: The Adam&Eve task (the one associated with the function main ()) uses the default TLS.

Table 2-10 Full Multithread Protection Command Line Configuration

iccarm .. -DOS_TAR MTHREAD=1 ..

Rev 1.9 Page 14

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

The library multithreading protection used by Abassi CORTExM3 IAR.s can also be set through the GUI,
in the “Assembler / Preprocessor” menu, as shown in the following figure:

Options for node "Demo_1 STM32_P407 IAR'

General Options
CfC++ Compiler
|| | output Converter

Custom Build

Build Actions [lgnore standard include directories

Linker

Debugger
Simulator Additional include directories: {one per line)
Angel i
GDEB Server
AR ROM-monitor
J-Link/1-Trace -
E:;::I;:_s Defined symbals: (one per line)
PE micro 05_IAR_MTHREAD=1 -
RDI
TTAGet J
STLINK
Third-Party Driver
TIXD5100

Figure 2-8 Full Multithread Protection GUI Configuration

2.5.3 Partial Multithreading Protection

It may not be necessary to make the library multithread safe for all tasks in an application; e.g. tasks that
don’t access or use the TLS, or call library functions using TLS, do not require the library to be protected.
It may also be desirable to share the TLS amongst a set of tasks. Setting the build option
0S_IAR MTHREAD to a negative value allows the selection of the tasks where multithreading protection is
required. The build option 0s_IAR MTHREAD is set the same way as described in the previous section.

A task is set to use the library in a multithread safe manner with the following:
Table 2-11 Setting a task to be multithread safe

#include “Abassi.h”

TSK_t *TskReent;
void DLIB TLS MEMORY *Mthread;

/* First the task must be created */

/* in the suspended state */
TskReent = TSKcreate (“TaskName”, TskPrio, StackSize, TaskFct, 0);

/* Get memory for the TLS */
Mthread = OSalloc(IAR DLIB PERTHREAD SIZE);

/* Initialize the TLS */

__dar dlib perthread initialize((void *) Mthread);
TskReent->XtraData[0] = (intptr t)Mthread; /* Attach the TLS to the task */

TSKreseum (TskReent) ; /* The task may now be resumed */

If the same TLS is desired to be shared amongst multiple tasks, simply set the field xtrabata[0] of the
tasks descriptors to the same TLS memory block, initialized once only.

Rev 1.9 Page 15

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

Rev 1.9 Page 16

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt
context. For all interrupt sources (except interrupt numbers less than -1) the Abassi RTOS provides an
interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the
kernel uses it to know if a request occurs within an interrupt context or not. Second, using this dispatcher
reduces the code size, as all interrupts share the same code for the decision making of entering the kernel or
not at the end of the interrupt: there is no need to add a preamble / epilogue in the functions handling the
interrupts.

The distribution makes provision for 241 sources of interrupts (plus the basic 15 exceptions), as specified
by the token 0s N INTERRUPTS in the file Abassi CORTExXM4 IAR.S, and the internal default value used
by abassi.c. Even though the Nested Vectored Interrupt Controller (NVIC) peripheral supports a
maximum of 512 interrupts on the Cortex-M4, the first 15 entries of the interrupt vector table are hard
mapped to dedicated handlers (the interrupt number -1, which is attached to sysTick, is not hard mapped
but is handled by the ISR dispatcher). The default value of 241 interrupts is only half of the maximum
number of supported exceptions.

3.1 Interrupt Handling

3.1.1 Interrupt Table Size

Most devices do not require all 512 interrupts as they typically only handle between 64 and 128 sources of
interrupts. The interrupt table can be easily reduced to recover code space, and at the same time recover the
same amount of data memory, or expanded if more than 256 interrupts are supported by the target device.
There are two files affected: in Abassi CortexM4 IAR.s, the ARM interrupt table itself must be
modified, and the value used in the file Abassi.c, in order to reduce the ISR dispatcher table look-up.
The interrupt table size is defined by the token 0s N _INTERRUPTS in the file Abassi CortexM4 IAR.s
around line 35. For the value used by abassi . c, the default value can be overloaded by defining the token
0S_N_INTERRUPTS When compiling abassi.c . The distribution table size is set to 241; that is the NVIC
maximum of 256 minus the 15 hard mapped exceptions.

For example, the STM32F407 device from ST Microelectronics uses only the first 100 entries of the
interrupt table (84 external interrupts plus the standard 16 exceptions). The 256 entries table can therefore
be reduced to 100. The value to set in Abassi CortexM4 ISR.s files is 85, which is the total of 100
entries minus 15 (there are 15 hard mapped exceptions). The changes are shown in the following table:

Table 3-1 Abassi_CortexM4_ISR.s interrupt table sizing

#ifndef OS N INTERRUPTS ; # of entries in the interupt table mapped to
0S N INTERUPTS EQU 85 ; ISRdispatch (). Must match the definition in Abassi.h
#endif

Rev 1.9 Page 17

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

Alternatively, it is possible to overload the 0s N INTERRUPTS value set in Abassi CORTEXM4 IAR.s by
using the assembler command line option -p and specifying the desired setting with the following:

Table 3-2 Command line set the interrupt table size

iasarm .. -DOS N INTERRUPTS=85 ..

The overloading of the default interrupt vector look-up table used by abassi.c is done by using the
compiler command line option -p and specifying the desired setting with the following:

Table 3-3 Overloading the interrupt table sizing for Abassi.c

iccarm .. -DOS N INTERRUPTS=85 ..

The interrupt table size used by Abassi CORTEXM4 IAR.s can also be set through the GUI, in the
“Assembler / Preprocessor” menu, as shown in the following figure:

Categary: Factony Settings

General Options
C/C++ Compiler
Assembler
Qutput Converter | Language | Output | List | Preprocessor | Diagnostics I Extra Options |
Custom Build
Build Actions [lanare standard include directories
Linker
Debugger

Simulater Additional include directories: {one per line)
Angel

GDB Server

IAR ROM-monitor
J-ink/1-Trace

TI Stellaris
Macraigor

PE micro 05_N_INTERRUFPTS=85
RDI

JTAGjet

ST-LINK
Third-Party Driver
TI ¥D5100

Defined symbols: jone per line)

Figure 3-1 GUI set of 0S_N_INTERRUPTS

Rev 1.9 Page 18

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

The interrupt table look-up size used by Abassi . c can also be overloaded through the GUI, in the “C/C++
Compiler / Preprocessor” menu, as shown in the following figure:

Options for node "Dem_l_STM32_P40?_lAR_ (]

Categany: Factany Settings

General Options [T Muiltifile: Cornpilation

Discard Unused Publics

Assembler
Output Converter Lst | Preprocessor | Diagnostics | MISRA-C:2004 | MISRAC:1398 |+ | *

Custom Build
Build Actions [T lanare standard include directories

Linker Additional include directories: {one per line)
Debugger -
Simulator
Angel
GDE Server
IAR. ROM-manitor

JHinkf1-Trace Preinclude file:

TI Stellaris E]
Macraigor

PE micro Defined symbals: {one per line)

RDI 0S_N_INTERRUPTS=85 » | || Preprocessor output to file
JTAGjet Preserve comments

ST-LIMK il Generate Hine directives

Third-Party Driver
TI ¥D5100

[0K] [Cancel

Figure 3-2 GUI set of 0s_N_INTERRUPTS

3.1.2 Interrupt Installer

Attaching a function to a regular interrupt is quite straightforward. All there is to do is use the RTOS
component 0SisrInstall () to specify the interrupt number and the function to be attached to that
interrupt number. For example, Table 3-4 shows the code required to attach the sysTick interrupt to the
RTOS timer tick handler (TTMtick):

Table 3-4 Attaching a Function to an Interrupt

#include “Abassi.h”

OSstart () ;

OSisrInstall (-1, &TIMtick);
/* Set-up the count reload and enable SysTick interrupt */

.. /* More ISR setup */

OSeint (1) ; /* Global enable of all interrupts */

NOTE: o0sisrInstall () uses the interrupt number, NOT the interrupt vector number.

Rev 1.9 Page 19

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

At start-up, once osstart () has been called, all 0s_ N INTERRUPTS interrupt handler functions are set to
a “do nothing” function, named o0sinvalidIsr(). If an interrupt function is attached to an interrupt
number using the osisriInstall () component before calling osstart (), this attachment will be
removed by 0Sstart (), S0 0OSisrInstall () should never be used before osstart () hasran. When an
interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the
handling function can be set back t0 0SinvalidIsr (). Thisis shown in Table 3-5:

Table 3-5 Invalidating an ISR handler

#include “Abassi.h”

/* Disable the interrupt source */
OSisrInstall (Number, &0SinvalidISR);

When an application needs to disable / enable the interrupts, the RTOS supplied functions osdint () and
0Seint () should be used.

The Nested Vectored Interrupt Controller (NVIC) on the Cortex-M4 does not clear the interrupt generated
by a peripheral; neither does the RTOS. If the generated interrupt is a pulse (as for the sysTick interrupt),
there is nothing to do to clear the interrupt request. However, if the generated interrupt is a level interrupt,
the peripheral generating the interrupt must be informed to remove the interrupt request. This operation
must be performed in the interrupt handler otherwise the interrupt will be re-entered over and over.

3.2 Interrupt Priority and Enabling

To properly configure interrupts, the interrupt priority must be set, and the peripheral configured to
generate interrupts and enable them. There is no software provided to perform these operations, as this
functionality is already available. First, the IAR Embedded Workbench supports the Cortex
Microcontroller Software Interface Standard (CMSIS), which provides everything required to program the
processor peripherals. Second, most chip manufacturers provide code to configure the specifics on their
devices.

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component
from Abassi, and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all
there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector
table used by the Cortex-M4 processor. The area of the interrupt vector table to modify is located in the
file Abassi CORTEXM4 IAR.s around line 100.

Rev 1.9 Page 20

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

For example, on a ST Microelectronics STM32F407 device, USART #1 is attached to interrupt number 37
(interrupt vector number 53) and the USART #2 is attached to the interrupt number 38 (interrupt vector
number 54). The code to modify is located in the macro loop that initializes the interrupt table that sets the
ISR dispatcher as the default interrupt handler. All there is to do is add checks on the token holding the
interrupt number, such that, when the interrupt number value matches the desired interrupt number, the
appropriate address gets inserted in the table instead of the address of 1srdispatch (). The original
macro loop code and modified one are shown in the following two tables:

Table 3-6 Distribution interrupt table code

INT_ NMB SET -1
REPT 0S N INTERRUPTS ; Map all the external interrupts to ISRdispatch()
DC32 ISRdispatch
INT NMB SET INT NMB+1
ENDR

Attaching a fast interrupt handler to the USART #1 and another one to USART#2, assuming the names of
the interrupt functions to attach are respectively USART1 IRQhandler () and USART2 IRQhandler (), iS
shown in Table 3-7:

Table 3-7 STM32F407 USART 1/ 2 Fast Interrupts

EXTERN USART1 IRQhandler
EXTERN USART2 IRQhandler

INT_NMB SET -1

REPT OS_N_ INTERRUPTS ; Map all the external interrupts to ISRdispatch()
IF INT_NMB == 37 ; When is interrupt # 37, set the USART #1 handler
DC32 USART1 IRQhandler
ELSEIF INT NMB == 38 ; When is interrupt # 38, set the USART #2 handler
DC32 USARTZ2_ IRQhandler
ELSE ; All others interrupt # mapped to ISRdispatch()
DC32 ISRdispatch
ENDIF
INT MB SET INT NMB+1
ENDR

It is important to add the ExTERN statement, otherwise there will be an error during the assembly of the file.

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

NOTE: A fast interrupt does not use Abassi interrupt dispatcher, therefore there is no need to use the
ISRinstall() component for a fats interrupt.

Rev 1.9 Page 21

Abassi RTOS

Port — ARM Cortex-M4 — IAR 2013.05.09

Even if the hybrid interrupt stack feature is enabled (see Section 2.2), fast interrupts will not use that stack.
This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To
make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the
call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in
the regular interrupt dispatcher. Reusing the example of the USART #1 on the STM32F407 device, this
would look something like:

Table 3-8 Fast Interrupt with Dedicated Stack

cpsid
mov
1ldr
cpsie
push

bl

pop
mov

RSEG

DS8

DC32

ELSEIF INT NMB == 37
USART1_preHandler

RSEG .text:CODE
ALIGNROM 2
THUMB

EXTERN USART1 IRQhandler

USART1 preHandler:

I

r0, sp

sp, =USART1 stack
I

{r0, 1r}

USART1 IRQhandler

{r0, 1lr}
sp, r0
1r

.noinit :DATA (3)

USART1_stack size

USART1 stack:

’

’

’
’
’
’

’

’
’

’

’

; Recover original sp & EXC_RETURN
; Recover pre-isr stack

Set the addres of the pre handler
in the interrupt table

Disable ISR to protect against nesting
Memo current stack pointer

Stack dedicated to this fast interrupt
The stack is now hybrid, nesting safe
Preserve original sp & EXC RETURN

; Enter the interrupt handler

Exit from the interrupt

Room for the fast interrupt stack

The same code, with unique labels, must be repeated for each of the fast interrupts.

Rev 1.9

Page 22

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

3.4 Nested Interrupts

The interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will interrupt
the processing of an interrupt of lower priority. Individual interrupt sources can be set to one of 8 levels,
where level 0 is the highest and 7 is the lowest. This implies that the RTOS build option
OS_NESTED INTS must be set to a non-zero value. The exception to this is an application where all
enabled interrupts handled by the RTOS ISR dispatcher are set, without exception, to the same priority;
then interrupt nesting will not occur. In that case, and only that case, can the build option
OS_NESTED INTS be setto zero. As this latter case is quite unlikely, the build option 0S NESTED INTS
is always overloaded when compiling the RTOS for the ARM Cortex-M4. If the latter condition is
guaranteed, the overloading located after the pre-processor directive can be modified. The code affected in
Abassi.h is shown in Table 3-9 below and the line to modify is the one with #define
OX NESTED INTS 1:

Table 3-9 Removing interrupt nesting

#elif defined(ICCARM) && defined(ARM PROFILE M)

#define OX NESTED INTS O /* The ARM has 8 nested (NIVC) interrupt levels*/

Or if the build option 0s_NESTED INTS is desired to be propagated:

Table 3-10 Propagating interrupt nesting

#elif defined(_ICCARM) && defined(ARM PROFILE M)

#define OX NESTED INTS OS NESTED INTS

The Abassi RTOS kernel never disables interrupts, but there is a few very small regions within the interrupt
dispatcher where interrupts are temporarily disabled due to the nesting (a total of between 10 to 20
instructions).

The kernel is never entered as long as interrupt nesting exists. In all interrupt functions, when a RTOS
component that needs to access some kernel functionality is used, the request(s) is/are put in a queue. Only
once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the kernel entered at
the end of the interrupt, when the queue contains one or more requests, and when the kernel is not already
active. This means that only the interrupt handler function operates in an interrupt context, and only the
time the interrupt function is using the CPU are other interrupts of equal or lower level blocked by the
interrupt controller.

Rev 1.9 Page 23

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,
the stack holds the register context that was preserved when the task got blocked or preempted. Also, when
an interrupt occurs, the register context of the running task must be preserved in order for the operations
performed during the interrupt to not corrupt the contents of the registers used by the task when it got
interrupted. For the Cortex-M4, the context save contents of a blocked or pre-empted task is different from
the one used in an interrupt, and is also different if the compiler is set to use the FPU or not. The following
table lists the number of bytes required by each type of context save operation:

Table 4-1 Context Save Stack Requirements

Description Context save
40 bytes
Interrupt dispatcher context save (0s ISR _STACK == 0) (FPU OFF) 40 bytes
Interrupt dispatcher context save (0s ISR STACK != 0) (FPU OFF) 48 bytes
Blocked/Preempted task context save (FPU ON) 112 bytes
Interrupt dispatcher context save (0s_ISR_STACK == 0) (FPU ON) 120 bytes
Interrupt dispatcher context save (0s_ISR_STACK != 0) (FPU ON) 128 bytes

The numbers for the interrupt dispatcher context save include the 32 bytes (FPU OFF) or the 96 bytes (FPU
ON) the processor pushes on the stack when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is
simply that every task in the application needs at least the area to preserve the task context when it is
preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in
the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So if N
levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR
context save on each task stack, plus any added stack used by all the interrupt handler functions. Finally,
add to all this the stack required by the code implementing the task operation.

NOTE: The ARM Cortex-M4 processor needs alignment on 8 bytes for some instructions accessing
memory. When stack memory is allocated, Abassi guarantees the alignment. This said, when
sizing 0S_STATIC STACK Or OS ALLOC SIZE, make sure to take in account that all allocation
performed through these memory pools are always by block size multiple of 8 bytes.

If the hybrid interrupt stack (see Section 2.2) is enabled, then the above description changes: it is only
necessary to reserve room on task stacks for a single interrupt context save (this excludes the interrupt
function handler stack requirements) and not the worst-case nesting. With the hybrid stack enabled, the
second, third, and so on interrupts use the stack dedicated to the interrupts. The hybrid stack is enabled
when the os ISR STACK token in the file Abassi CORTExXM4 IAR.s is set to a non-zero value (see
Section 2.2).

Rev 1.9 Page 24

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

5 Search Set-up

The Abassi RTOS build option os_searcH rFasT offers three different algorithms to quickly determine
the next running task upon task blocking. The following table shows the measurements obtained for the
number of CPU cycles required when a task at priority O is blocked, and the next running task is at the
specified priority. The number of cycles includes everything, not just the search cycle count. The number
of cycles was measured using the sysTick peripheral, which decrements the counter once every CPU
cycle. The second column is when 0S_SEARCH FAST is set to zero, meaning a simple array traversing.
The third column, labeled Look-up, is when 0s SEARCH FAST is set to 1, which uses an 8 bit look-up
table. Finally, the last column is when os_sEARCH FAST is set to 5 (IAR/Cortex-M4 int are 32 bits, so
275), meaning a 32 bit look-up table, further searched through successive approximation. The compiler
optimization for these measurements was set to Level High / Speed optimization; the FPU is enabled for
these measurements. The RTOS build options were set to the minimum feature set, except for option
0S_PRIO_CHANGE set to non-zero. The presence of this extra feature provokes a small mismatch between
the result for a difference of priority of 1, with 0s_SEarRcH FAST set to zero, and the latency results in
Section 7.2.

When the build option 0s_SEARCH ALGO is set to a negative value, indicating to use a 2-dimensional
linked list search technique instead of the search array, the number of CPU cycles is constant at 235 cycles.

Rev 1.9 Page 25

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation
1 242 266 307
2 244 272 307
3 250 278 307
4 256 284 307
5 262 290 307
6 268 296 307
7 274 302 307
8 280 274 307
9 286 276 307
10 292 282 307
11 298 288 307
12 304 294 307
13 310 300 307
14 316 306 307
15 322 312 307
16 328 284 307
17 334 286 307
18 340 292 307
19 346 298 307
20 352 304 307
21 358 310 307
22 364 316 307
23 370 322 307
24 376 294 307

When 0s_SEARCH FAST is set to O, each extra priority level to traverse requires exactly 6 CPU cycles.
When 0s_SEARCH FAST is Set to 1, each extra priority level to traverse requires exactly 6 CPU cycles,
except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.
Overall, setting os SEaRCH FAST to 1 adds 28 cycles of CPU for the search compared to setting
0OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, ... then there is an
extra 10 cycles needed, but without the 8 times 6 cycle accumulation. Finally, the third option, when
0S_SEARCH_FAST is set to 5, delivers a perfectly constant CPU usage, as the algorithm utilizes a
successive approximation search technique (when the delta is 32 or more, the CPU cycle count is 315, for
64 or more, it is 323).

Rev 1.9 Page 26

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

The first observation, when looking at this table, is that the first option, when 0s_SEARCH FAST is setto 0,
is the most CPU efficient when the priority span is less than 8. For more than 8 priority spans, the second
option (when os_searRCH FAST is set to 1) is overall more CPU efficient than the third option (when
0S_SEARCH_FAST is set to 5) for a span of around 20 priorities. So, the build option 0s_SEARCH FAST
should never be set to 5, as it is not the most efficient method, unless the application has way more than 20
priority levels.

Setting the build option 0S_SEARCH ALGO to a non-negative value minimizes the time needed to change
the state of a task from blocked to ready to run, and not the time needed to find the next running task upon
blocking/suspending of the running task. If the application needs are such that the critical real-time
requirement is to get the next running task up and running as fast as possible, then set the build option
0S_SEARCH_ALGO to a negative value.

Rev 1.9 Page 27

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

6 Chip Support

No custom chip support is provided with the distribution code because the IAR Embedded Workbench for
the ARM supports the Cortex Microcontroller Software Interface Standard (CMSIS). Therefore, all
peripherals on the Cortex-M3 can be accessed and configured through the CMSIS. Also, most device
manufacturers provide code to configure the peripherals on their devices. The distribution code contains
some of the manufacturer’s open source libraries, e.g. STM.

Rev 1.9 Page 28

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the
RTOS is used on the ARM Cortex-M4 and compiled with IAR Embedded Workbench. The CPU cycles
are exactly the CPU clock cycles, as the processor typically executes one instruction at every clock
transition.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the
smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the
features. For both cases, names are not part of the build. This feature was removed from the metrics
because it is highly probable that shipping products utilizing this RTOS will not include the naming of
descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of
components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for
the “C” code. These numbers were obtained using the release version 1.122.205 of the RTOS and may
change in other versions. One should interpret these numbers as the “very likely” numbers for other
released versions of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the
RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Optimization level: High
2. Optimize for: Size

3. All transformations are enabled

I Options for nede "Demao.

Cateqgory: Facton Settings

General Options [Multi-file: Compilation

Discard Unused Publics

Assembler
Output Converter | Language 1 I Language 2 I Code | Optimizations | Output | List R

Custom Build
Build Actions

Level Enabled transformations:

Linker (2 None [¥] Common subexpression elimination »
Debugger ™ Low Loop unralling ‘

Function inlining
Code motion

Simulator) Medium
Angel B

GDB Server © High [¥] Type-based alizs analysis
TAR ROM-monitor Static clustering
JLink/1-Trace [¥] Instruction scheduling

TI Stellaris
Macraigor

PE micro

ROI

JTAGjet

STALINK
Third-Party Driver
TIXD5100

[0K][Cancel]

Figure 7-1 Memory Measurement Code Optimization Settings

Rev 1.9 Page 29

Abassi RTOS

Port — ARM Cortex-M4 — IAR

2013.05.09

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 650 bytes
+ Runtime service creation / static memory < 850 bytes
+ Multiple tasks at same priority < 900 bytes
+ Runtime priority change < 1400 bytes
+ Mutex priority inheritance
+ FCFS
+ Task suspension
+ Timer & timeout < 1800 bytes
+ Timer call back
+ Round robin
+ Events < 2400 bytes
+ Mailbox
Full Feature Build (no names) < 2900 bytes
Full Feature Build (no names / no runtime creation) < 2600 bytes
Full Feature Build (no names / no runtime creation) < 2950 bytes
+ Timer services module

Table 7-2 Assembly Code Memory Usage
Description Size
Assembly code size (FPU OFF) 172 bytes
Assembly code size (FPU ON) 244 bytes
Exception Handler (per handler) +8 bytes
Vector table (per interrupt handler entry) +4 bytes
Hybrid Stack Enabled +16 bytes
Saturation Bit Enabled +20 bytes
FPU runtime ON / OFF +192 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its
own data memory to operate, and second, most of the services offered by the RTOS require data memory
for each instance of the service. As the build options affect either the kernel memory needs or the service
descriptors (or both), an interactive calculator has been made available on Code Time Technologies

website.

Rev 1.9

Page 30

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

7.2 Latency

Latency of operations has been measured on a Olimex STM32-P407 Evaluation board populated with a 168
MHz STM32F407 device. The clock setting for the measurement used the internal oscillator operating at
16 MHz, which allows running from the flash with 0 wait states. All measurements have been performed
on the real platform, as the IAR Workbench simulator does not support the simulation of the sysTick
timer as this is the counter used to count the cycles. This means the interrupt latency measurements had to
be instrumented to read the sysTick counter value. This instrumentation can add up to 5 or 6 cycles to the
measurements. The code optimization settings that were used for the latency measurements are:

1. Optimization level: High
2. Optimize for: Speed

3. All transformations are enabled

[Options for node "Demo.

Category: Factory Settings

General Options [Multifile Compilation

Dizezard Unused Publics
Assembler
Output Converter | Language 1 I Language 2 I Code | Optimizations | Qutput I List I S
Custom Build
Build Actions Level Enabled transformations:

Linker () None [¥] Common subexpression elimination
Debugger) Low Loop unralling
Simulator) Medium Function |.n||n|ng
Angel @ Hi [¥] Code motion
GDE Server @ Hgh [¥] Type-based alizs analysis
TAR. ROM-monitor Speed Static clustering
J-Link/1-Trace [¥] Instruction scheduling
TI Stellaris
Macraigor
PE micro
RDI
ITAGjet
STLINK
Third-Party Driver
TI XD5100

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very
good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three
tasks were involved:

1. Adam & Eve set to a priority value of 0;
2. Alow priority task set to a priority value of 1;
3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a
mailbox. The first 2 latency measurements use the component in a manner where there is no task
switching. The third measurements involve a high priority task getting blocked by the component. The
fourth measurements are about the opposite: a low priority task getting pre-empted because the component
unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,
through an interrupt is provided.

Rev 1.9 Page 31

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

The first set of measurements counts the number of CPU cycles elapsed starting right before the component
is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

Start CPU cycle count
SEMpost (..); or EVTset(..); or MBXput();
Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task
switching. This means:

Table 7-4 Measurement without Blocking

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used
that blocked the task. This means:

Table 7-5 Measurement with Task Switch

main ()

{

SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

}

TaskPriol ()
{

Start CPU cycle count
SEMpost (..) ; or EVTset(..); or MBXput (..);

Rev 1.9 Page 32

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

The forth set of measurements counts the number of CPU cycles elapsed starting right before the
component blocks of a high priority task until the next ready to run task is back from the component it was
blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

main ()

{

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);

}

TaskPriol ()
{

SEMpost (..) ; or EVTset(..); or MBXput(..);
Stop CPU cycle count

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt
using the component, until the task that was blocked becomes the running task and is back from the
component used that blocked the task. The interrupt latency measurement includes everything involved in
the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the
interrupt code. The interrupt function, attached with 0sisrInstall (), is simply a two line function that
uses the appropriate RTOS component followed by a return.

Table 7-7 lists the results obtained, where the cycle count is measured using the sysTick peripheral on the
Cortex-M4. This timer decrements its counter by 1 at every CPU cycle. As was the case for the memory
measurements, these numbers were obtained using the release version 1.122.205 of the RTOS and may
change in other versions.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR
function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt
stack and branch to the address specified in the interrupt vector table. But for this measurement, the
STM32F407 Systick Timer is used to trigger the interrupt and measure the elapsed time. The latency
measurement includes the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used
between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in
the 0SisrInstall(). The interrupt overhead when entering the kernel is calculated using the results
from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU
cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization
component.

The hybrid interrupt stack feature was not enabled, neither was the saturation bit, in any of these tests.
When the FPU is on, the runtime FPU ON / OFF feature of Abassi is not enabled.

Rev 1.9 Page 33

Abassi RTOS Port— ARM Cortex-M4 — IAR 2013.05.09

In the following two tables, the latency numbers between parentheses are the measurements when the build
option 0s_SEARCH ALGO is set to a negative value. The regular number is the latency measurements when
the build option 0s_SEARCH ALGO is set to 0.

Table 7-7 Latency Measurements FPU OFF

Description Minimal Features Full Features
Semaphore posting no task switch 115 (112) 160 (153)
Semaphore waiting no blocking 118 (113) 168 (160)
Semaphore posting with task switch 177 (196) 279 (290)
Semaphore waiting with blocking 191 (184) 306 (294)
Semaphore posting in ISR with task switch 342 (359) 448 (461)
Event setting no task switch n/a 156 (149)
Event getting no blocking n/a 179 (171)
Event setting with task switch n/a 293 (303)
Event getting with blocking n/a 321 (309)
Event setting in ISR with task switch n/a 462 (474)
Mailbox writing no task switch n/a 199 (190)
Mailbox reading no blocking n/a 209 (201)
Mailbox writing with task switch n/a 339 (348)
Mailbox reading with blocking n/a 343 (331)
Mailbox writing in ISR with task switch n/a 508 (520)
Interrupt Latency 25 25

Interrupt overhead entering the kernel 165 (163) 169 (171)
Interrupt overhead NOT entering the kernel 46 46

Context switch 38 40

Rev 1.9 Page 34

Abassi RTOS

Port — ARM Cortex-M4 — IAR

2013.05.09

Table 7-8 Latency Measurements FPU ON

Description Minimal Features Full Features
Semaphore posting no task switch 115 (112) 160 (153)
Semaphore waiting no blocking 118 (113) 168 (160)
Semaphore posting with task switch 219 (238) 321 (332)
Semaphore waiting with blocking 233 (226) 348 (336)
Semaphore posting in ISR with task switch 414 (431) 520 (533)
Event setting no task switch n/a 156 (149)
Event getting no blocking n/a 179 (171)
Event setting with task switch n/a 335 (345)
Event getting with blocking n/a 363 (351)
Event setting in ISR with task switch n/a 534 (546)
Mailbox writing no task switch n/a 199 (190)
Mailbox reading no blocking n/a 209 (201)
Mailbox writing with task switch n/a 381 (390)
Mailbox reading with blocking n/a 385 (373)
Mailbox writing in ISR with task switch n/a 580 (592)
Interrupt Latency 49 49
Interrupt overhead entering the kernel 195 (193) 199 (201)
Interrupt overhead NOT entering the kernel 70 70

Context switch 82 82

Rev 1.9

Page 35

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build
Table 8-1: Case 0 build options

#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 20 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS MTX INVERSION 0 /* To enable & type of protection against prio inv */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS

#define OS_NESTED_ INTS 0 /* If operating with nested interrupts */
#endif
#define OS_ PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO MIN 2 /* Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 0 /* Does not Support multiple same priority tasks */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC MBX 0 /* If !'=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services */
#define OS_TIMER US 0 /* !'=0 enables timer & specifies the period in u$S */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.9 Page 36

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09
8.2 Case 1: + Runtime service creation / static memory
Table 8-2: Case 1 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 20 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_ USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
#define OS NESTED INTS 0 /* 1If operating with nested interrupts */

#endif
#define OS_ PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO MIN 2 /* Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 0 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_ RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* =0 includes the timer services */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$S */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.9 Page 37

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09
8.3 Case 2: + Multiple tasks at same priority
Table 8-3: Case 2 build options
#define OS ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of 1lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define 0OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 320 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_ USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
#define OS NESTED INTS 0 /* 1If operating with nested interrupts */

#endif
#define OS_ PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_ RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* =0 includes the timer services */
#define OS_TIMER US 0 /* !'=0 enables timer & specifies the period in u$S */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.9 Page 38

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend
Table 8-4: Case 3 build options

#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 320 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_ USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS

#define OS NESTED INTS 0 /* If operating with nested interrupts */
#endif
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_ RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* =0 includes the timer services */
#define OS_TIMER US 0 /* !'=0 enables timer & specifies the period in u$S */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.9 Page 39

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09
8.5 Case 4: + Timer & timeout / Timer call back / Round robin
Table 8-5: Case 4 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 320 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_ USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
#define OS NESTED INTS 0 /* 1If operating with nested interrupts *

#endif
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_ RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* =0 includes the timer services */
#define OS_TIMER US 50000/* !=0 enables timer & specifies the period in u$S */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.9 Page 40

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09
8.6 Case 5: + Events / Mailboxes
Table 8-6: Case 5 build options
#define OS ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 320 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_ USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
#define OS NESTED INTS 0 /* 1If operating with nested interrupts */

#endif
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 10 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* =0 includes the timer services */
#define OS_TIMER US 50000/* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.9 Page 41

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

8.7 Case 6: Full feature Build (no names)
Table 8-7: Case 6 build options

#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 320 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_ USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS

#define OS NESTED INTS 0 /* 1If operating with nested interrupts */
#endif
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 10 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* =0 includes the timer services */
#define OS_TIMER US 50000/* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.9 Page 42

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09

8.8 Case 7: Full feature Build (no names / no runtime creation)
Table 8-8: Case 7 build options

#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 320 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_ USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS

#define OS NESTED INTS 0 /* 1If operating with nested interrupts */
#endif
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* =0 includes the timer services */
#define OS_TIMER US 50000/* !=0 enables timer & specifies the period in u$S */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.9 Page 43

Abassi RTOS Port — ARM Cortex-M4 — IAR 2013.05.09
8.9 Case 8: Full build adding the optional timer services
Table 8-9: Case 8 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When !=0, the kernel is in cooperative mode */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 320 /* Maximum number of requests posted in ISRs */
#define OS_MIN_STACK_ USE 0 /* If the kernel minimizes its stack usage */
#define OS_MTX DEADLOCK 0 /* To enable the mutex deadlock detection */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* 1= 0 when named Tasks / Semaphores / Mailboxes */
#ifndef OS_NESTED_INTS
#define OS NESTED INTS 0 /* 1If operating with nested interrupts */

#endif
#define OS_ PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH_ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !'=0 how many tasks (excluding A&E and Idle) */
#define OS_STATIC TIM SRV 0 /* If !'=0 how many timer services */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 1 /* =0 includes the timer services */
#define OS_TIMER US 50000/* !=0 enables timer & specifies the period in u$S */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.9 Page 44

