
Copyright Information

This document is copyright Code Time Technologies Inc. ©2011,2012. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of

Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

ATmega128 – GCC

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

Atmel AVR Studio and AVR are registered trademarks of Atmel Corporation or its subsidiaries. All other trademarks are the property
of their respective owners.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6

2 TARGET SET-UP .. 7

2.1 INTERRUPT STACK SET-UP .. 8
2.2 INTERRUPT NESTING ... 8

3 INTERRUPTS ...10

3.1 INTERRUPT HANDLING ...10
3.1.1 Interrupt Installer ..10

3.2 UNUSED INTERRUPTS ...11
3.3 FAST INTERRUPTS ...12
3.4 NESTED INTERRUPTS ..14

4 STACK USAGE...15

5 SEARCH SET-UP ...16

6 CHIP SUPPORT ...19

7 MEASUREMENTS ...20

7.1 MEMORY ..20
7.2 LATENCY ..22

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...26

8.1 CASE 0: MINIMUM BUILD ...26
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..27
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...28
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND29
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..30
8.6 CASE 5: + EVENTS / MAILBOXES ..31
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...32
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..33
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...34

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 7
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...20
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...22

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 INTERRUPT STACK ENABLED ... 8
TABLE 2-2 INTERRUPT STACK DISABLED .. 8
TABLE 2-3 NESTED INTERRUPTS ENABLED .. 8
TABLE 2-4 NESTED INTERRUPTS DISABLED ... 8
TABLE 3-1 ATTACHING A FUNCTION TO AN INTERRUPT ...10
TABLE 3-2 INVALIDATING AN ISR HANDLER ..11
TABLE 3-3 INTERRUPT PROLOGUE ...11
TABLE 3-4 INTERRUPT PROLOGUE REMOVAL ..11
TABLE 3-5 ATMEGA128-16AU TIMER/COUNTER3 PROLOGUE REMOVAL ..12
TABLE 3-6 ATMEGA128-16AU TIMER/CONTER3 FAST INTERRUPT ..12
TABLE 3-7 FAST INTERRUPT WITH DEDICATED STACK ..13
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...15
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..17
TABLE 7-1 “C” CODE MEMORY USAGE ...21
TABLE 7-2 ASSEMBLY CODE MEMORY USAGE ..21
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH ..23
TABLE 7-4 MEASUREMENT WITHOUT BLOCKING ...23
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ..23
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKING ..24
TABLE 7-7 LATENCY MEASUREMENTS ..25
TABLE 8-1: CASE 0 BUILD OPTIONS ..26
TABLE 8-2: CASE 1 BUILD OPTIONS ..27
TABLE 8-3: CASE 2 BUILD OPTIONS ..28
TABLE 8-4: CASE 3 BUILD OPTIONS ..29
TABLE 8-5: CASE 4 BUILD OPTIONS ..30
TABLE 8-6: CASE 5 BUILD OPTIONS ..31
TABLE 8-7: CASE 6 BUILD OPTIONS ..32
TABLE 8-8: CASE 7 BUILD OPTIONS ..33
TABLE 8-9: CASE 8 BUILD OPTIONS ..34

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 6

1 Introduction

This document details the port of the Abassi RTOS to the ATmega128 processor from Atmel. The

software suite used for this specific port is the Atmel AVR Studio 5; the specific version used for the port

and all tests is Version 5.0.1223, which bundles GCC version 4.5.1.

NOTE: This document does not cover the port for AVR devices other than ATmega128. Different

documents describe the port for non-ATmega128 AVR devices.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_ATmega128_GCC.s RTOS assembly file for the ATmega128 to use with the

AVR-GCC toolchain

Demo_3_AVRMT128_GCC.c Demo code that runs on the Olimex AVR-MT-128

evaluation board using the serial port

Demo_3_AVRMT128_GCC.mak Makefile for Demo #3

Demo_4_AVRMT128_GCC.c Demo code that runs on the Olimex AVR-MT-128

evaluation board using the LCD

Demo_4_AVRMT128_GCC.mak Makefiel for Demo #4

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

None

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 7

2 Target Set-up

Very little is needed to configure the Atmel AVR Studio development environment to use the Abassi

RTOS in an application. All there is to do is to add the files Abassi.c and Abassi_ATmega128_GCC.s

in the source files of the application project, and make sure the configuration settings (described in the

following subsections) in the file Abassi_ATmega128_GCC.s are set according to the needs of the

application. As well, update the include file path in the C/C++ compiler preprocessor options with the

location of Abassi.h.

Figure 2-1 Project File List

NOTE: The GCC libraries are not multithread-safe without the use of the –pthread command line

option. However, this option is not available in the avr-gcc bundled with Atmel AVR Studio 5.

This means calls to libraries functions that are non- multithread-safe should be protected by a

mutex, ideally the G_OSmutex mutex. These functions are typically the dynamic memory

management functions, some form of the printf / scanf functions, file I/O, etc. If the GCC

toolset used utilizes the newlib libraries from Red Hat, you need to attach Abassi mutexes to the

x_lock() and x_unlock() multithread protections functions.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 8

2.1 Interrupt Stack Set-up

It is possible, and highly recommended to use a hybrid stack when nested interrupts are enabled in an

application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate

extra room to the stack of every task in the application to handle the interrupt nesting. This feature is

controlled by the value set by the definition ISR_STACK, located around line 25 in the file

Abassi_ATmega128_GCC.s. To disable this feature, set the definition of ISR_STACK to a value of zero.

To enable it, and specify the interrupt data stack size, set the definition of ISR_STACK to the desired size in

bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid stack

feature is enabled, and a data stack size of 64 bytes is allocated; this is shown in the following table:

Table 2-1 Interrupt Stack enabled

 .equ ISR_STACK, 64 ; If using a dedicated stack for the ISRs

 ; 0 if not used, otherwise size of stack in bytes

Table 2-2 Interrupt Stack disabled

 .equ ISR_STACK, 0 ; If using a dedicated stack for the ISRs

 ; 0 if not used, otherwise size of stack in bytes

2.2 Interrupt Nesting

The normal operation of the interrupt controller on the ATmega128 devices is to only allow a single

interrupt to operate at any time. This means when the processor is servicing an interrupt, any new

interrupts, even if their priority is higher than the serviced interrupt level, remain pending until the

processor finishes servicing the current interrupt. The interrupt dispatcher allows the nesting of interrupts;

this means an interrupt of any priority can interrupt the processing of an interrupt currently being handled.

Nested interrupts are enabled by setting both the build option OS_NESTED_INTS in the Abassi.h file and

the token NESTED_INTS in the Abassi_ATmega128_GCC.s file, around line 30, to a non-zero value, as

shown in the following table:

Table 2-3 Nested Interrupts enabled

 .equ NESTED_INTS, 1 ; To allow interrupt nesting, set to non zero

 ; To not allow interrupt nesting, set to zero

Interrupt nesting is disabled (in other words, the interrupts operate exactly as the ATmega128 interrupt

controller operates) by setting both the build option OS_NESTED_INTS in the Abassi.h file and the token

NESTED_INTS in the Abassi_ATmega128_GCC.s file to a zero value, as shown in the following table:

Table 2-4 Nested Interrupts disabled

 .equ NESTED_INTS, 1 ; To allow interrupt nesting, set to non zero

 ; To not allow interrupt nesting, set to zero

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 9

NOTE: The build option OS_NESTED_INTS must be set to a non-zero value when the token

NESTED_INTS in the file Abassi_ATmega128_GCC.s is set to a non-zero value. If the token

NESTED_INTS in the file Abassi_ATmega128_GCC.s is set to a zero value, and the build option

OS_NESTED_INTS is non-zero, the application will properly operate, but with a tiny bit less

real-time efficiency when kernel requests are performed during an interrupt.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 10

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. Normally, when coding with the Atmel AVR Studio, an interrupt function is specified with the

ISR() macro. But for all interrupt sources (except for the reset), the Abassi RTOS provides an interrupt

dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the kernel uses

it to know if a request occurs within an interrupt context or not. Second, using this dispatcher reduces the

code size, as all interrupts share the same code for the decision making of entering the kernel or not at the

end of the interrupt.

3.1 Interrupt Handling

3.1.1 Interrupt Installer

Attaching a function to an interrupt is quite straightforward. All there is to do is use the RTOS component

OSisrInstall() to specify the interrupt priority and the function to be attached to that interrupt vector

index (the interrupt vector index is the interrupt vector number minus one). For example, Table 3-1 shows

the code required to attach the TIMER/COUNTER1 overflow interrupt (on a ATMEGA128-16AU) to the

RTOS timer tick handler (TIMtick):

Table 3-1 Attaching a Function to an Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSisrInstall(14, &TIMtick);

 /* Set-up the count reload and enable SysTick interrupt */

 … /* More ISR setup */

 OSeint(1); /* Global enable of all interrupts */

The standard interrupt vector definition supplied by the file avr/io.h (TIMER1_OVF_vect in the above

example) cannot be used, as they are macro definitions generating the wrapping code for interrupt handlers.

NOTE: The function to attach to an interrupt is a regular function, not one declared with the Embedded

Atmel AVR Studio specific ISR() macro.

NOTE: OSisrInstall() uses the interrupt priority index. As an example, the reset interrupt has the

index of 0.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 11

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

number using the OSisrInstall() component before calling OSstart(), this attachment will be

removed by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an

interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the

handling function can be set back to OSinvalidISR(). This is shown in Table 3-2:

Table 3-2 Invalidating an ISR handler

#include “Abassi.h”

 …

 /* Disable the interrupt source */

 OSisrInstall(Number, &OSinvalidISR);

 …

Another example with a real interrupt initialization function is shown in Section Error! Reference source

not found..

When an application needs to disable/enable the interrupts, the RTOS supplied functions OSdint() and

OSeint() should be used.

3.2 Unused Interrupts

The assembly file Abassi_ATmega128_GCC.s, as supplied in the distribution, includes the prologue code

for the interrupt dispatcher for all sources of interrupts. If the code memory space is becoming a bit short,

removing the prologues for unused interrupts will help recover a bit of code memory from that dead code.

Removing the interrupt dispatcher prologue for an unused interrupt is a one-step process. All there is to do

is to remove the unused interrupt vector prologue. The 34 prologues are located at around line 230, and

each one is defined as shown in the following:

Table 3-3 Interrupt Prologue

 ISR_PROLOGUE XX

Commenting out the desired prologue removes the code:

Table 3-4 Interrupt Prologue Removal

; ISR_PROLOGUE XX

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 12

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component

from Abassi and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all

there is to do is to remove the corresponding interrupt prologue as explained in the previous section and use

the Atmel AVR Studio interrupt macro ISR() to create the interrupt handler. Two following tables show

how attach a fast interrupt to the COUNTER/TIMER3 overflow (interrupt index 29) of the ATmega128:

Table 3-5 ATMEGA128-16AU TIMER/COUNTER3 Prologue removal

; ISR_PROLOGUE 29

Table 3-6 ATMEGA128-16AU TIMER/CONTER3 Fast Interrupt

#include <avr/io.h>

#include <avr/interrupt.h>

…

ISR(TIMER3_OVF_vect)

{

 … /* Code for the interrupt handler */

}

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 13

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.

This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. If

the fast interrupt is coded in “C”, it is not possible to make this fast interrupt use a hybrid stack. If the

interrupt handler is coded in assembler, then it can be done, as shown in the Table 3-7. The example

re-uses the TIMER/COUNTER3 overflow interrupt:

Table 3-7 Fast Interrupt with Dedicated Stack

 …

 …

; ISR_PROLOGUE 29 ; Remove the ISR prologue of Timer 3

 …

 …

 .section .text, “ax”

 .balign 2

 .type __vector_29, @function ; Overload the library interrupt vector

 .global __vector_29

__vector_29:

 push r31 ; 2 registers are needed to deal with

 push r30 ; the hybrid stack

 in r31, SPH ; Save current stack pointer on the

 sts (T3stack-1), r31 ; hybrid stack

 in r31, SPL

 sts (T3stack-2), r31

 ldi r31, lo8(T3stack-3) ; Set stack pointer to hybrid stack

 out SPL, r31

 ldi r31, hi8(T3stack-3)

 out SPH, r31

 ; *** ADD extra register save here

 call My_Timer3_Int ; OR insert ISR handler code here

 ; *** ADD extra register restore here

 pop r31 ; Back to the original stack pointer

 pop r30

 out SPL, r31

 out SPH, r30

 pop r30

 pop r31

 reti

 …

 .section .bss

 .space T3_STACK_SIZE ; Reserve room in bss for the hybrid stack

T3stack:

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 14

The same code, with unique labels, must be repeated for each of the fast interrupts. If the interrupt handler

modifies more registers than r30 & r31 (don’t forget the status register), every modified register must be

preserved after the set-up of the hybrid stack and before the tear down of the hybrid stack. Also, if the

interrupts are re-enabled to allow interrupt nesting, the interrupts must remain disabled until the hybrid

stack is completely set-up and must be disabled before the teardown of the hybrid stack, as the

manipulation of the stack registers (SPL and SPH) creates a critical region.

3.4 Nested Interrupts

The interrupt dispatcher allows the nesting of interrupts; nested interrupt means an interrupt of any priority

will interrupt the processing of an interrupt currently being serviced. Refer to Section 2.2 for information

on how to enable or disable interrupt nesting.

The Abassi RTOS kernel never disables interrupts
1
, but there are a few very small regions within the

interrupt dispatcher where interrupts are temporarily disabled when nesting is enabled (a total of between

10 to 20 instructions).

The kernel is never entered as long as interrupt nesting is occurring. In all interrupt functions, when a

RTOS component that needs to access some kernel functionality is used, the request(s) is/are put in a

queue. Only once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the

kernel entered at the end of the interrupt, when the queue contains one or more requests, and when the

kernel is not already active. This means that only the interrupt handler function operates in an interrupt

context, and only the time the interrupt function is using the CPU are other interrupts of equal or lower

level blocked by the interrupt controller.

1
 The way GCC uses the stack, in most of the code generated by GCC, there are regions where interrupts

are disabled for 3 instructions (3 CPU cycles); the same applies for Abassi context switch.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 15

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the ATmega128, the context save contents of a blocked or pre-empted task is different

from the one used in an interrupt. The following table lists the number of bytes required by each type of

context save operation:

Table 4-1 Context Save Stack Requirements

The numbers for the interrupt dispatcher context save include the 2 bytes the processor pushes on the stack

when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in

the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So, if N

levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR

context save on each task stack, plus any added stack used by the interrupt handler functions. Finally, add

to all this the stack required by the code implementing the task operation.

If the hybrid interrupt stack (see Section 2.1) is enabled, then the above description changes: it is only

necessary to reserve room on task stacks for a single interrupt context save and not the worst-case nesting.

With the hybrid stack enabled, the second, third, and so on interrupts use the stack dedicated to the

interrupts. The hybrid stack is enabled when the ISR_STACK token in the file

Abassi_ATmega128_GCC.s is set to a non-zero value (Section 2.1).

Description Context save

Blocked/Preempted task context save 19 bytes

Interrupt context save (no Hybrid stack) 17 bytes

Interrupt context save (Hybrid stack) 17 bytes

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 16

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers four different algorithms to quickly determine the

next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using the TIMER/COUNTER3 peripheral, which was set to increment the counter

once every CPU cycle. The second column is when OS_SEARCH_FAST is set to zero, meaning a simple

array traversing. The third column, labeled Look-up, is when OS_SEARCH_FAST is set to 1, which uses an

8 bit look-up table. Finally, the last column is when OS_SEARCH_FAST is set to 4 (ATmega128 int are 16

bits, so 2^4), meaning a 16 bit look-up table, further searched through successive approximation. The

compiler optimization for this measurement was set to Level High / Speed optimization. The RTOS build

options were set to the minimum feature set, except for option OS_PRIO_CHANGE set to non-zero. The

presence of this extra feature provokes a small mismatch between the result for a difference of priority of 1,

with OS_SEARCH_FAST set to zero, and the latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimensional

linked list search technique instead of the search array, the number of CPU is constant at 433 cycles.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 17

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 426 488 622

2 439 496 627

3 447 504 638

4 455 512 637

5 463 520 648

6 471 528 653

7 479 536 664

8 487 492 657

9 495 505 668

10 503 513 673

11 511 521 684

12 519 529 683

13 527 537 694

14 535 545 699

15 543 553 710

16 551 503 636

17 559 516 647

18 567 524 652

19 575 532 663

20 583 540 662

21 591 548 673

22 599 556 678

23 607 564 689

24 615 514 682

The third option, when OS_SEARCH_FAST is set to 4, never achieves a lower CPU usage than when

OS_SEARCH_FAST is set to zero or 1. This is understandable, as the ATMEGA128 does not possess a

barrel shifter for variable shift. When OS_SEARCH_FAST is set to zero, each extra priority level to traverse

requires exactly 8 CPU cycles. When OS_SEARCH_FAST is set to 1, each extra priority level to traverse

also requires exactly 8 CPU cycles, except when the priority level is an exact multiple of 8; then there is a

sharp reduction of CPU usage. Overall, setting OS_SEARCH_FAST to 1 adds around 57 extra cycles of CPU

for the search compared to setting OS_SEARCH_FAST to zero. But when the next ready to run priority is

less than 8, 16, 24, … then there are some extra cycles needed, but without the 8 times 8 cycles

accumulation.

What does this mean? Using more that 6 to 8 tasks on the ATMEGA128 may be an exception due to the

limited data memory space, so one could assume the number of tasks will remain small. If that is the case,

then OS_SEARCH_FAST should be set to 0. If an application is created with more than 6 to 8 tasks, then

setting OS_SEARCH_FAST to 1 may be better choice.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 18

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run, but not the time needed to find the next running task upon

blocking/suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 19

6 Chip Support

No chip support is provided with the distribution.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 20

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the ATMEGA128 and compiled with the Atmel AVR Studio 5. The CPU cycles are

exactly the CPU clock cycles, not a conversion from a duration measured on an oscilloscope then converted

to a number of cycles.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

The code memory required by the RTOS includes the “C” code and assembly language code used by the

RTOS. The code optimization settings used for the memory measurements are:

1. Optimization Level: Optimize for size (-Os)

2. Debug Level: None

Figure 7-1 Memory Measurement Code Optimization Settings

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 21

Table 7-1 “C” Code Memory Usage

Description Code Size

Minimal Build < 1100 bytes

+ Runtime service creation / static memory < 1475 bytes

+ Multiple tasks at same priority < 1800 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 3000 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 3750 bytes

+ Events

+ Mailbox

< 5175 bytes

Full Feature Build (no names) < 6275 bytes

Full Feature Build (no names / no runtime creation) < 5450 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 5850 bytes

Table 7-2 Assembly Code Memory Usage

Description Size

ASM code 296 bytes

Vector Table (per interrupt) + 4 bytes

Interrupt prologue (per interrupt) + 8 bytes

Hybrid Stack Enabled +28 bytes

Nested interrupts Enabled +14 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on the Code Time Technologies

website.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 22

7.2 Latency

Latency of operations has been measured on an Olimex Evaluation board populated with a 16 MHz

ATMEGA128-16AU device. All measurements have been performed on the real platform, using the timer

peripheral TIMER/COUNTER3 set-up to be clocked at the same rate as the CPU. This means the interrupt

latency measurements had to be instrumented to read the TIMER/COUNTER3 counter value. This

instrumentation can add up to 5 or 6 cycles to the measurements. The code optimization settings used for

the latency measurements are:

1. Optimization Level: Optimize most (-O3)

2. Debug Level: None

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 23

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement there is no task

switching. This means:

Table 7-4 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-5 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 24

The forth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSisrInstall(), is simply a two line function that

uses the appropriate RTOS component followed by a return.

Table 7-7 lists the results obtained, where the cycle count is measured using the TIMERA peripheral on the

ATMEGA128. This timer increments its counter by 1 at every CPU cycle. As was the case for the

memory measurements, these numbers were obtained with a beta release of the RTOS. It is possible the

released version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt

stack and branch to the address specified in the interrupt vector table. For this measurement, the MSP30

TIMERA is used to trigger the interrupt and measure the elapsed time.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in

the OSisrInstall(). The interrupt overhead when entering the kernel is calculated using the results

from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU

cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization

component.

The hybrid interrupt stack feature was not enabled, neither was the oscillator bit preservation, nor the

interrupt nesting, in any of these tests.

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 25

In the following table, the latency numbers between parentheses are the measurements when the build

option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when

the build option OS_SEARCH_ALGO is set to 0.

Table 7-7 Latency Measurements

Description Minimal Features Full Features

Semaphore posting no task switch 229 (243) 399 (449)

Semaphore waiting no blocking 220 (236) 415 (476)

Semaphore posting with task switch 396 (436) 767 (867)

Semaphore waiting with blocking 395 (401) 800 (862)

Semaphore posting in ISR with task switch 651 (699) 1071 (1177)

Event setting no task switch n/a 395 (448)

Event getting no blocking n/a 449 (510)

Event setting with task switch n/a 831 (916)

Event getting with blocking n/a 852 (914)

Event setting in ISR with task switch n/a 1134 (1225)

Mailbox writing no task switch n/a 510 (568)

Mailbox reading no blocking n/a 502 (559)

Mailbox writing with task switch n/a 882 (987)

Mailbox reading with blocking n/a 921 (984)

Mailbox writing in ISR with task switch n/a 1196 (1308)

Interrupt Latency 71 71

Interrupt overhead entering the kernel 255 (263) 304 (310)

Interrupt overhead NOT entering the kernel 105 105

Context switch 112 112

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 26

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 27

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 28

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 29

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 30

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 31

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 32

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 33

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – ATmega128 – GCC 2012.04.23

Rev 1.2 Page 34

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

