CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document
MSP430X — IAR

Copyright Information

This document is copyright Code Time Technologies Inc. ©2011,2012. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

IAR Embedded Workbench is a trademark owned by IAR Systems AB. MSP430 and Code Composer Studio are registered
trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

Abassi RTOS Port — MSP430X — IAR 2012.04.21

1

~N o o1 B~

Table of Contents

INTRODUGCTION ..ottt ettt e e ettt e s ettt e e s ebb e e e s eabeeessabeseesbeesssssbaesesbasessssbesesssbensesan 7
1.1 DISTRIBUTION CONTENTS tittiiiiiiittttitieessiiittttttteesessiisbssteessssssssbsssessssssassssssssesssssssbssssesssssisssrssssssesss 7
O 1Y T - 1 L] TSR 7

TARGET SETUP oot ettt ettt ettt ettt e e s et et e e sttt e e sbat e e s ebbaeessabbeessbaseesssbenessabensesaes 8
2.1 INTERRUPT STACK SETUP .uuiiiiiiiiiiitiiiie e e e s iittttie e e e e s s sttt e s s e s s s sbbbabe e s e e s s sbbbbbeesesssassbbbbesseesssaabbbaaeeeeas 10
2.2 INTERRUPT INESTING ..oiiuviiiiiittiie ittt e s ititeeseetteeesestesessbaeessssbesssssbesesssbaeesaabbesssasbeesssbbesssasbaeessbeessssnres 11
2.3 OSCILLATOR CONTROL BITS PROPAGATIONociiuteieeittieeietteeessteeessibeeesasssessssssesssssssesssssssesssssssssssnnes 13
2.4 INTERRUPT VECTOR TABLEutiiiiittiieiittie e eettte e s ettesesstteessettessssabasesssbaeesaabbesssasbassssbaesssasbassesbeeeessnnes 14
RS T 010 | 1= T = 2 T O 1= 10 N 16

b R |V T 0 T Y o Yo [TP 16

R © o 11 To] g T o oS 17

253 Option -10CK_I4 [--TEOVAT Toiiiiieiiieiiiteeeees ettt 18

254 Option -10CK_I5 / --FEOVAT_F5.....iiiiiiiiiiciicte ettt 20

255 _regvar DECIArationcccciiiiiiiiiiieise ettt 21

INT ERRUP TS oottt ettt ettt s ettt e e s et bt e e s ettt e e sttt e e sasbeeesaabeeeesbbeeesasbbesesbeaeessbbeeesatenesins 22
3.1 INTERRUPT HANDLING ...vtvttiiieee ettt e e e e e s ettt et e e e s s ettt e e e e e s s s bbb bt e e s e e s sabbbbbeaeesssassbbbbeessesssaarbbaeeeeeas 22
3.2 UNUSED INTERRUPTS . ..ttitttttttteeeteiitttttteeeesssssbasteseesssssbbatessssssaasbbateasesssassbbsbessesssassbbbbesssessssssrbbasseeeas 23
3.3 FAST INTERRUPTS ¢ ettt ittt ettt e ettt e e e e e e s bbb e e e e e s s e b bbbt e e e e e s s e bbb b b e e e e e e s s e bbb b e e s eesssabbbbeeeeeeas 24
3.4 NESTED INTERRUPTS ...ciiiittttiieeiiiiittttie e e e e s sibbbatessessssbbbaaeeseesssbbbbbeeseessaabb bbb eeseessaasbbbbeeseesssabbbbeeeeeeas 26

STACK USAGEt s e e et e e s e et e s s e b e e e s st b e e s sbbeesssbbaeesasbeeeeans 27

] N RO I I 1T 28

(OF L1 U1 =T = SR 31

IMEASUREMENTS ..ottt ettt et ettt e e st e e s ettt e s et et e e s bt e e e sasbeeeseabaeeessabeeessbbeeesanreeessanes 32
B0 R Y/ 1 =11V, = 2T 32
A I 1 =1 N[O 270 TR 35

APPENDIX A: BUILD OPTIONS FOR CODE SIZEoooioeeee ettt 41
8.1 CASE 0: IMINIMUM BUILD .vvviiiiiiiiiittieiieee e e s sttt e e e e e s setbtteeaeesssssbbeteaseesssssbasaessesssassbbasesseesssasssrrasseess 41
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORYuvvieeiitiieeeerieesseeeeeesseiesessenneessesneeessanes 42
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY .oiiiiiiiititiieeeeiiiiiirieeeeessssinsiesseesssssnssessesssssssnssssssess 43
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPENDccccvvvvieeivieeeenne 44
8.5 CASE4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBINcccoitviieiiiiiee ittt 45
8.6 CASEB5: + EVENTS/ IMAILBOXESceeiiutiieeiittiee sttt e s sttee s s ettt s e s eatatessibtsesssstassssabtaeessabesssssbaesssbensessanns 46
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...c.uiitiitieieaieiesiestesiestesieeeesesaesteseesbesseensesaesseseesnessesneans 47
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION)cvtiuirieniinieeiieieneenie e seesneans 48
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...vvvviiieeiiiiiriiieieessseiirieeseesssssnsneeseees 49

Rev 1.7 Page 3

Abassi RTOS Port — MSP430X — IAR 2012.04.21

List of Figures

FIGURE 2-1 PROJECT FILE LIST woiiitiiiitii ittt ctte et e stee et e st e st e e ste e s ste e e stee s teeenbaesstaesnbaessbeeenbeesstneenbeessteeenseeesees 8
FIGURE 2-2 RUN-TIME LIBRARY CONFIGURATIONccititiiteestreaiteesteeasseessseeesseesssssassesssessnsessssssessessssssensesssses 9
FIGURE 2-3 THREAD-SAFE PROJECT FILE LIST ..uviiiiiiiiitii ettt ettt ettt eesbe e sbneenrae s ntneennee e 9
FIGURE 2-4 GUI SETOF OS_ ISR STACK wiiicuiiiiiiiiiiiiiiiiic bbb 11
FIGURE 2-5 GUI SETOF OS NESTED INTS...ciiiitititetiteiiiiiiinisisteie et 12
FIGURE 2-6 GUI SET OF OS_HANDLE OSCuiiiiiiiiiiiititiieiii ittt bbb bbb 14
FIGURE 2-7 GUI SETOF OS_INT VECT SIZE ...t 15
FIGURE 2-8 GUI SET OF OS_ DATA MODEL ...oiiititititititeiii ittt bbb 17
FIGURE 2-9 GUI SETOF OS_ OPT PIC .iiiiiisiiiiisiiiiiisiie st 18
FIGURE 2-10 GUI SETOF OS_OPT_ LOCK_Ré...ciiiiiiiiiiiiiiiiiiie ettt 19
FIGURE 2-11 GUISETOF OS_OPT LOCK_R5.iiciiiiiiiiiiiisiiiiiin bbb 21
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...cciiutreeiiiieeeeieeeesitveeeesteeeesnneeesnnveeas 33
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGSciittteeeiiieeestrreesitreeeesnneeesnnnnessssneeas 35

Rev 1.7 Page 4

Abassi RTOS Port — MSP430X — IAR 2012.04.21

List of Tables

TABLE 1-1 DISTRIBUTION ..vtiiiteiitteiiteeiteeeiteesteesssesassseassesasesassessssssassessssssessesssssesssesesssessssesssesssssesssessseessnes 7
TABLE 2-1 INTERRUPT STACK ENABLEDceciitiiiiteeitteiiteesteeateesteesseesstessnsessssssnsesssssssnsessssssensesssssssnsessssens 10
TABLE 2-2 INTERRUPT STACK DISABLEDveeitiiiiteeiteeiiteesteesiteestessseesstessssesssesssssssssssnsesssssssnsesssssssssessssens 10
TABLE 2-3 COMMAND LINE SETOFOS ISR STACK i 10
TABLE 2-4 NESTED INTERRUPTS ENABLED.......cciiitttieiitiieeiittteeeetteeesitteeeaatteeeesseeeesesseeasastsesesassesessssesesassseeeans 11
TABLE 2-5 NESTED INTERRUPTS DISABLEDvtiiiteiiteeiteesteesteesteesseessseesssessssesssesssssssnsessssssensesssssssnsessssens 12
TABLE 2-6 COMMAND LINE SETOF OS_NESTED INTS ..o 12
TABLE 2-7 OSCILLATOR BITS NOT PROPAGATEDeeiiitiieeiittieeeetteeeeitteeeaettteeestaeeesesaeeeaesbaesesnssesessssesessseeeeans 13
TABLE 2-8 OSCILLATOR BITS PROPAGATED ...viiiiitiiieiitieeeeettteeeeteeeesetteeeaatteeeestaeeesasaeeaasstaesesassesessssesesassesenns 13
TABLE 2-9 COMMAND LINE SET OF OS_HANDLE OSCltiiiiiiiiiiiiiiiieieieieieiee e 13
TABLE 2-10 INTERRUPT VECTOR WITH L8 ENTRIESttiiiteiiteeiieesiteestee st e steesteesteesbeesneesntaeeneesstaeenseessnnas 14
TABLE 2-11 INTERRUPT VECTOR WITH 32 ENTRIESuvviteiitieeeeteeeeiitteeeeetteeeeeteeeestteeessssaessensseeessssesesanseesenns 14
TABLE 2-12 INTERRUPT VECTOR WITH 64 ENTRIESuvvieeiitieeeeiteeeeiitieeeeetteeeeeteeeesetveeeasssaessenssesessssesessnseesenns 15
TABLE 2-13 COMMAND LINE SETOF OS_INT VECT SIZE..ciiiiiiiiiiieeieiisisisiieiesesee e 15
TABLE 2-14 SMALL MEMORY MODELuutieiitutieiiitreesitteeeasttreesssesesssssesessstsesssssssesssssssesssssesssnssssessssssssssssseenns 16
TABLE 2-15 MEDIUM MEMORY MODEL ..vveieiitttieiitireesitteeeastteeeessaeeessssesssssssessssssesssssssssssssssssnssssesssssssssssssenns 16
TABLE 2-16 LARGE MEMORY MODELuutieiiitiieiiiiteeiitteeeastteeesssseesssssesesastsessssssesssssssssssssessanssssessssssssssssssenns 16
TABLE 2-17 COMMAND LINE SET OF OS_ DATA MODEL.uciiiiiiiiiiieteieteieieiee e 16
TABLE 2-18 POSITION INDEPENDENT CODEuceciiutttieiitteeeaitteeessteeeesissesesssssessssesessssssssssssesesnssssesssssssssssseenns 17
TABLE 2-19 NON- POSITION INDEPENDENT CODEccttteeiittieeeitneeesitteeessstseessseseesssseessssssesssnsssessssssssssnseenns 17
TABLE 2-20 COMMAND LINE SET OF OS_OPT_ PIC..cciiiiiiiiisisisiisiesisinsis st sttt st st 18
TABLE 2-21 R4 USED AS A GLOBAL REGISTERuvviiiiitieeeiittieeeeteeeesitreeessttteessisseeesesseesasssaesesassesessssesesssseesenns 18
TABLE 2-22 R4 NOT USED AS A GLOBAL REGISTER.......uvteeiittieeeiteeeeiitteeesettteessiseeeesisreessssssesssassesssisesesssseesesns 19
TABLE 2-23 COMMAND LINE SET OF OS_OPT_ LOCK R4 iiiiiiiiiiiiiiiiiiisin i 19
TABLE 2-24 R5 USED AS A GLOBAL REGISTERuvtiiiitieeeeittieeeeteeeesetteeeseteeesseseeeesesaeeesasaessssssesessssesesasseesesns 20
TABLE 2-25 R5 NOT USED AS A GLOBAL REGISTER.......uvteeiittteeeiteeeeiitteeeasttreesssssessssseeesssssesssnssssessssesssssssseenns 20
TABLE 2-26 COMMAND LINE SETOF OS_OPT LOCK_R5 teieieieiiiiiiieteteiesescsee et 20
TABLE 3-1 ATTACHING A FUNCTION TO AN INTERRUPTc.ttiiiiiitt e e sittee e e sttt e e stee e e s etve e e e stbae e e sntneeessnnneeesnsneeeans 22
TABLE 3-2 ATTACHING A FUNCTION TO AN INTERRUPTvtiiieetiee e eettee e e ettt e e etee e e s etaeeeeestaeeeeneeaessareeesanseeeeans 22
TABLE 3-3 INVALIDATING AN ISR HANDLER........uvttiiiitiieeecttieeeetee e e eeteeeeettaeeeeteeeesetaeeeesnbaeeeeessesesssseeesaseeeeans 23
TABLE 3-4 ENTRY IN THE INTERRUPT VECTOR TABLEeeiiittiiieetieeecettee e e ettt e e etae e e setaeeeeeataeeeeneeaessnveeeeanseeeeans 23
TABLE 3-5 UNUSED INTERRUPT VECTOR TABLEoviiiittieeecttiee ettt e e eetteeeeetteeeeeteeeeseaaeeessssaesesnssesessssesesanseeseans 23
TABLE 3-6 DO-NOTHING INTERRUPT HANDLERoeiiiitiieeiittieeeeteeeesetteeesetteeeeeteeeesesaeeesssseeessnssesesssseeesanseeeeans 24
TABLE 3-7 INTERRUPT DISPATCHER PROLOGUEcccitiieeittieeeeiteeeesetteeeeetteeeeeteeeesetaeeessssaesssessesessssenesanseeeeans 24
TABLE 3-8 INTERRUPT DISPATCHER PROLOGUE REMOVALccoitiiieiiiieeectieeesieeeesinteeesstbaessssseaessnseeessssneeenns 24
TABLE 3-9 MSP430F5438 TIMERA REGULAR INTERRUPTcctttieiitiieeeitieeestee e e s stteeeesntaeesssneeessaneeeesnseeeeans 24
TABLE 3-10 MSP430F5438 TIMERA FAST INTERRUPTuvviiiiitiiiecitieeeesitee e e siee e s etve e e e sttae e s etneeesnnveeeesnneeeeens 24
TABLE 3-11 FAST INTERRUPT WITH DEDICATED STACKuttiiiiiitiieecitiee e e ettt e e et e s etve e e e sttae e e eaee e e s navaeeesnteeeeens 25
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS .1vviiiiiiiiititeiieeeseiiitbrrieeessssiibastessssssssssssesssesssssssssssssesssnnes 27
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ...vviiiitiieeecttieeeetee e e eteee e e etteeeeeteeeesesaeesssssaesssnssesesssseeesasseeeeans 29
TABLE 7-1 “C” CODE IMEMORY USAGEciittiiiiitie e eettee e eette e e et e e s etaeeeaettaeesetaeeessaaeeessssaeesenssesesssseeesaseeeeans 34
TABLE 7-2 ASSEMBLY CODE MEMORY USAGEoceiiiitiieeicttieeeetie e e seteeeeeetteeeeeitaeessetaeesssssaesssnssesessssesesaseeeeans 34
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCHvviiiiittiiiectiee e cettee e eeetee e e et e setaeeesenvaeeserseeessnseeessnneeeeans 36
TABLE 7-4 MEASUREMENT WITHOUT BLOCKINGcouvvieiictteeeeetee e e setteeeeeeteeeeeteeeesetaeeseestaesssssesessaseeesanseneeans 36
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ..evvviiitiieeicttieeeetee e s stee e e ettee e e eteeeesesaeesssssaesssssesesssseeesssseeeeans 36
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKINGcccccutiiieitieeeiitieeeeitteeeeeteeeesiaaeessssssesssssesessssesassseeeenns 37
TABLE 7-7 LATENCY MEASUREMENTS (SMALL MODEL) w...vcitiiiiiiiite ettt s 38
TABLE 7-8 LATENCY MEASUREMENTS (MEDIUM IMIODEL)ciuiiiiieiiestesieeiee ettt s 39
TABLE 7-9 LATENCY MEASUREMENTS (LARGE IMODEL)vciuiiiieiiie ettt st 40
TABLE 8-1: CASE O BUILD OPTIONScuttiieiittteeeeteeeesitreeeaatteeesassseesassesesasssessssssessassssesssssessssssssesssesesassseeesns 41
TABLE 8-2: CASE L BUILD OPTIONSccuttiieiitttieeiteeeesitteeeestteeesasseessassesesasssesssssseesassssesssssesssnsessesssesesssseeeeans 42
TABLE 8-3: CASE 2 BUILD OPTIONSeeiutteiteesttteareesteessessssesssessssesasesssssssnsessssssansessssssansessssssnsessssssensessssees 43
TABLE 8-4: CASE 3 BUILD OPTIONSeeiuvteiteestteeateesteessesssesassessssessssesssssssnsessssssnsesssssansessssssansessssssenessssees 44

Rev 1.7 Page 5

Abassi RTOS Port — MSP430X — IAR 2012.04.21

TABLE 8-5: CASE 4 BUILD OPTIONSuvviieiitteieiitetessbeessssstessssssessssssasssssssessssssssssssssssssssesssssssssssssessssssessesns 45
TABLE 8-6: CASE 5 BUILD OPTIONSiuvviieiitteietiteressseesessstessssssessssissesssassessssssssssssssssssssssssssssesssssssessssssessesns 46
TABLE 8-7: CASE 6 BUILD OPTIONSuvtiieiitteieietereesbeesesessesesssessssissessssssessssssssssssssssssssssssssssssssssessssssessesns 47
TABLE 8-8: CASE 7 BUILD OPTIONScciiitttiiiieeeisiitttittseeesssissbsatsssssssissbsssessssssssbasssssssssissbsssesssssssssssssssssesssses 48
TABLE 8-9: CASE 8 BUILD OPTIONSciiitttiitieeeieiitttttieeeesssissbbatsessssssssbastessssssissbasssessssssssbsssesssssssssssssssssesssnses 49

Rev 1.7 Page 6

Abassi RTOS

Port — MSP430X — IAR 2012.04.21

1 Introduction

This document details the port of the Abassi RTOS to the MSP430 processor with extended addressing,
also known as the MSP430X. The software suite used for this specific port is the IAR Embedded

Workbench for MSP430; the version used for the port and all tests is Version 5.40.6.

NOTE: This document does not cover the port for regular (or legacy) MSP430 devices without the
extended memory architecture. A different document describes the port for the MSP430 devices.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h

Include file for the RTOS

Abassi.c

RTOS “C” source file

Abassi MSP430X IAR.s

RTOS assembly file for the MSP430X to use with the IAR
Embedded Workbench

Abassi IAR MTX IF.c

Abassi interface functions for thread-safe operation of the
IAR DLIB for EW Version >=5.40.

Demo 2 MSP5438TK IAR.cC

Demo code that runs on the Olimex MSP-5438STK
evaluation board using the LCD

Demo 3 MSP5438TK IAR.cC

Demo code that runs on the Olimex MSP-5438STK
evaluation board using the serial port

Demo 4 MSP5438TK IAR.cC

Demo code that runs on the Olimex MSP-5438STK
evaluation board using joystick and the serial port

Low level init

Start-up function that disable the watchdog timer

AbassiDemo.h

Build option settings for the demo code

1.2 Limitations
None.

Rev 1.7

Page 7

Abassi RTOS Port — MSP430X — IAR 2012.04.21

2 Target Set-up

Very little is needed to configure the IAR Embedded Workbench development environment to use the
Abassi RTOS in an application. All there is to do is to add the files Abassi.c and
Abassi MSP430X_IAR.s in the source files of the application project, and make sure the configuration
settings (described in the following subsections) in the file Abassi MSP430X_ IAR.s are set according to
the needs of the application. As well, update the include file path in the C/C++ compiler preprocessor
options with the location of Abassi .h.

("= 1AR Embedded Workbench ID

File Edit View Project Simulator Tecols Window Help
0w W@ = | |

[Relzaze

=

Files ooy
El=]Demo_4_MSP430X_IAR - Release* | v | |
[Abassic *
l— [Abassi_MSP430%_IAR &

L@ C1 Output

Workspace

Demo_4_MSP430<_IAR

]
m
o
o
<

Figure 2-1 Project File List

NOTE: By default, some functions in the IAR Embedded Workbench C/C++ run-time library are not
multithread-safe. As such, library functions like printf (), malloc (), Or fopen () should be
made multithread-safe through the use of a mutex. It is also advisable to use a single mutex
(¢_osmutex) for all accesses to the non- multithread-safe modules, as some non- multithread-safe
modules quite likely call other non- multithread-safe ones.

The IAR Embedded Workbench for the MSP430 Version 5.40 (and up) supports multithread-safe
libraries as long as the ——guard calls option is set in the C/C++ Compiler Extra Options box,
as the library supplies the RTOS interface functions for the mutexes. The libraries may need to be
rebuilt to enable this feature; refer to the IAR “C/C++” User’s Guide. These interface functions
are supplied in the file Abassi IAR MTX IF.c. All there is to do is add the file
Abassi IAR MTX IF.c inthe application project.

Rev 1.7 Page 8

Abassi RTOS

Port - MSP430X — IAR

2012.04.21

,
T

Categany: Factany Settings

General Options [T Muiltifile: Cornpilation
Dizcard Unused Publics
Assembler
Custom Buid | Diagnostics | MISRAC:2004 [MISRAC:1398 | Exira Options [
Build Actions
Linker Use command line options
Debugger Command line options: (one per ling)
FET Debugger
Simulator ~guard_calls -

File Edit View Project Simulator Tecols Window Help

DEH@ & % BR|e o

* [Release hd]

Files LS H]
Els]Demo_4_MSP430X_IAR - Release* [v | |
) Abassic B
Ahassi_lAR_MTY_IF.c .
F— [Abassi_MSP430x_IAR s

L@ 1 Qutput

Waorkspace

| Demo_4_MSP430%_IAR

=
m
o
=%
b=

Figure 2-3 Thread-safe Project File List

Rev 1.7

Page 9

Abassi RTOS Port — MSP430X — IAR 2012.04.21

NOTE: This applies when coding in assembly language:

If a hardware multiplier is available on the target device, the use of the multiplier must always be
protected by disabling/enabling the interrupts. This is true even when the multiplier is not
accessed inside an interrupt. The reason is that one or many task switches may be triggered by an
interrupt. So, if the preemption of a task occurs when it is in the process of using the multiplier,
and a newly running task also uses the multiplier, the multiplication result for the pre-empted task
will be erroneous.

There is no possibility for the RTOS to protect the multiplier, as the operation to perform is set
when the first operand is written to the desired “operation” register; there is no way to know which
of the “operation” registers was written last, specifying the type of operation, therefore the RTOS
cannot protect the multiplier registers.

The IAR compiler generates code that protects the multiplier when using it.

2.1 Interrupt Stack Set-up

It is possible, and highly recommended, to use a hybrid stack when nested interrupts occur in an
application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate
extra room to the stack of every task in the application to handle the interrupt nesting. This feature is
controlled by the value set by the definition os 1sr_sTack, located around line 30 in the file
Abassi MSP430X IAR.s. To disable this feature, set the definition of 0S ISR STACK to a value of zero.
To enable it, and specify the interrupt stack size, set the definition of 0s_1sr_sTACK to the desired size in
bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid stack
feature is enabled, and a stack size of 128 bytes is allocated; this is shown in the following table:

Table 2-1 Interrupt Stack enabled

#ifndef OS_ISR STACK
0S ISR STACK EQU 128 ; If using a dedicated stack for the ISRs
#endif ; 0 if not used, otherwise size of stack in bytes

Table 2-2 Interrupt Stack disabled

#ifndef OS ISR STACK
0S ISR STACK EQU 0 ; If using a dedicated stack for the ISRs
#endif ; 0 if not used, otherwise size of stack in bytes

Alternatively, it is possible to overload the 0s ISR STACK value set in Abassi MSP430X IAR.s by
using the assembler command line option -p and specifying the desired hybrid stack size. In the following
example, the hybrid stack size is set to 64 bytes:

Table 2-3 Command line set of 0S_ISR_STACK

2430 .. -DOS_ ISR STACK=64 ..

Rev 1.7 Page 10

Abassi RTOS Port — MSP430X — IAR 2012.04.21

The interrupt stack size can also be set through the GUI, in the “Assembler / Preprocessor” menu, as shown
in the following figure:

Options for node "Dema_4_MSPA30X_TA|

Category: Factary Settings

General Options
C/C++ compiler
Assembler

I Custom Build | Language | Cutput | List | Preprocessor | Diagnostics I Edra Opticr15|
Build Actions

Linker [T lanore standard include directories STOOLKIT_DIRSMNGY,

Debugger
FET Debugger
Simulator Additional include directories: {one per ling)

Defined symbals: {one per line)
0S_ISR_STACK=64 -

[Ok] [Cancel

Figure 2-4 GUI set of 0s_ISR_STACK

2.2 Interrupt Nesting

The normal operation of the interrupt controller on the MSP430X family is to only allow a single interrupt
to operate at any time. This means when the processor is servicing an interrupt, any new interrupts, even if
their priority is higher than the serviced interrupt level, remain pending until the processor finishes
servicing the current interrupt. The interrupt dispatcher allows the nesting of interrupts; this means an
interrupt of any priority can interrupt the processing of an interrupt currently being handled. Nested
interrupts are enabled by setting both the build option 0s NESTED INTS and the token 0S_NESTED INTS
inthe Abassi MSP430X IAR.s file, around line 30, to a non-zero value, as shown in the following table:

Table 2-4 Nested Interrupts enabled

#ifndef OS_NESTED_INTS
OS_NESTED_INTS EQU 1 ; To allow interrupt nesting, set to non-zero
#endif ; To not allow interrupt nesting, set to zero

Rev 1.7 Page 11

Abassi RTOS Port — MSP430X — IAR 2012.04.21

Interrupt nesting is disabled (in other words, the interrupts operate exactly as the MSP430X interrupt
controller operates) by setting both the build option os NESTED INTS and the token NESTED INTS to a
zero value, as shown in the following table;

Table 2-5 Nested Interrupts disabled

#ifndef OS NESTED INTS
OS_NESTED INTS EQU 0 ; To allow interrupt nesting, set to non-zero
#endif ; To not allow interrupt nesting, set to zero

Alternatively, it is possible to overload the 0s NESTED INTS value set in Abassi MSP430 IAR.s by
using the assembler command line option -D and specifying the setting for the nesting of the interrupts.
Even though the token name is identical to the Abassi build option, a definition passed to the compiler does
not get propagated to the assembler, so the assembler option —-p must also be used. The following example
shows the activation of the nesting for the interrupts:

Table 2-6 Command line set of 0S_NESTED _INTS

a430 .. -DOS_NESTED INTS=1

The control of the interrupt nesting can also be set through the GUI, in the “Assembler / Preprocessor”
menu, as shown in the following figure:

Options for node "Dema_4_MSPA30X_IA|

Categany: Factany Settings

General Options
C/C++ compiler

Assembler
I Custom Build | Language | Cutput | List | Preprocessor | Diagnostics I Edra Optior15|
Build Actions
Linker |:| lgnore standard include directories STOOLKIT_DIRSMNC
Debugger
FET Debugger
Simulator Addtional include directories: {one per line)

Defined symbals: {one per line)
OS_NESTED_INTS=1 -

[Ok] [Cancel

Figure 2-5 GUI set of 0s_NESTED_INTS

Rev 1.7 Page 12

Abassi RTOS Port — MSP430X — IAR 2012.04.21

NOTE: The build option 0s NESTED INTS must be set to a non-zero value when the token
0S_NESTED INTS in the file Abassi MSP430X IAR.s is set to a non-zero value. If the token
0S_NESTED INTS in the file Abassi MSP430x IAR.s iS set to a zero value, and the build
option 0S_NESTED INTS is non-zero, the application will properly operate, but with a tiny bit less
real-time efficiency when kernel requests are performed during an interrupt.

2.3 Oscillator control bits propagation

In the MSP430X status register, there are 3 bits that control the oscillators on the device. If any of these
bits is modified after the interrupts are enabled in the application, the change must be propagated across all
tasks and interrupts. This feature is controlled by the value set by the definition 0s HANDLE osc, located
around line 35 in the file Abassi MSP430x IAR.s. To disable this feature, set the definition of the token
O0S_HANDLE OSC to a value of zero. To enable it, set the definition of 0S_HANDLE Osc to a non-zero
value. As supplied in the distribution, the oscillator control bits propagation is disabled; this is shown in
the following table:

Table 2-7 Oscillator bits not propagated

#ifndef OS_HANDLE_ OSC
0OS_HANDLE 0SC EQU 0 ; Set to non-zero to propagate oscillator control bits
#endif ; in SR from ISR to the background / tasks

Table 2-8 Oscillator bits propagated

#ifndef OS_HANDLE_ OSC
0OS_HANDLE 0SC EQU 1 ; Set to non-zero to propagate oscillator control bits
#endif ; in SR from ISR to the background / tasks

Alternatively, it is possible to overload the 0s HANDLE osc value set in Abassi MSP430X IAR.s by
using the assembler command line option -D and specifying the desired propagation mode. In the
following example, the oscillator bits are propagated:

Table 2-9 Command line set of 0s_HANDLE_oOsc

a430 .. -DOS_HANDLE 0OSC=1

Rev 1.7 Page 13

Abassi RTOS Port — MSP430X — IAR 2012.04.21

The propagation of the oscillator control bits can also be set through the GUI, in the “Assembler /
Preprocessor” menu, as shown in the following figure:

Options for node "Dema_4_MSPA30X_TA|

Category: Factary Settings

General Options
C/C++ compiler
Assembler

I Custom Build | Language | Cutput | List | Preprocessor | Diagnostics I Edra Opticr15|
Build Actions

Linker [T lanore standard include directories STOOLKIT_DIRSMNGY,

Debugger

FET Debugger
Simulator Additional include directories: {one per line)

Defined symbals: {one per line)
0S5_HANDLE_OSC=1 -

[Ok] [Cancel

Figure 2-6 GUI set of os_HANDLE OscC

2.4 Interrupt vector table

There are three different flavors for the MSP430X interrupt table: some devices have a table capable of
handling up to 16 interrupts sources, others have room for 32 interrupt sources, and others can deal with 64
interrupt sources. Abassi can support all three, but it must be configured to the correct size in order to
optimize the code footprint and properly map the interrupt priority to the interrupt vector table entry. The
information must be set in the file Abassi MSP430x_IarR.s around line 40; the token
0S_INT VECT SIZE must be setto 16, for a 16 entry table, to 32, for a 32 entry table, or set to 64 for a 64
entry table:

Table 2-10 Interrupt vector with 16 entries

#ifndef OS INT VECT SIZE
OS_INT VECT_ SIZE EQU 16 ; Number of interrupts in the interrupt vector table
#endif ; Should be either 16 / 32 / 64

Table 2-11 Interrupt vector with 32 entries

#ifndef OS INT VECT SIZE
O0S INT VECT SIZE EQU 32 ; Number of interrupts in the interrupt vector table
#endif ; Should be either 16 / 32 / 64

Rev 1.7 Page 14

Abassi RTOS Port — MSP430X — IAR 2012.04.21

Table 2-12 Interrupt vector with 64 entries

#ifndef OS INT VECT SIZE
OS_INT VECT SIZE EQU 64 ; Number of interrupts in the interrupt vector table
#endif ; Should be either 16 / 32 / 64

The value set in the distribution file is for an interrupt vector table sized at 64.

Alternatively, it is possible to overload the 0s_INT VECT SIzE value setin Abassi MSP430X_IAR.s by
using the assembler command line option -p and specifying the required interrupt vector table size. In the
following example, the interrupt vector table is set to 16 entries:

Table 2-13 Command line set of 0S_INT VECT SIZE

2430 .. -DOS_INT VECT SIZE=16

The interrupt vector table size can also be set through the GUI, in the “Assembler / Preprocessor” menu, as
shown in the following figure:

Options for node "Demo_4_MSPA30X_IA|

Categony: Factory Settings

General Options
C/C++ compiler
Assembler
Custom Build | Language | Output | List | Preprocessor | Diagnostics I Extra Optior15|
Build Actions
Linker [lanore standard include directories STOOLKIT_DIRSMNC
Debugger

FET Debugger
Simulator Addttional include directories: {one per ling)

Defined symbals: {one perline)
OS5_INT_VECT_SIZE=16 A

[0K] [Cancel

Figure 2-7 GUI set of 0S_INT VECT SIZE

Rev 1.7 Page 15

Abassi RTOS Port — MSP430X — IAR 2012.04.21

2.5 Compiler Options

This subsection describes the configuration changes to make in the Abassi MSP430x IAR.s when the
application is built enabling some compiler options.

2.5.1 Memory Model

The compiler can generate code for three different models, and because of this, the assembly file must also
be configured to match the compiler settings. This is controlled with the token os_paTa MoDEL, defined
in the file Abassi MSP430x_1aR.s around line 45. To configure the assembly file for the small data
model, the token 0s DATA MODEL must be set to a value of zero, as shown in the following table:

Table 2-14 Small memory model

#ifndef OS DATA MODEL

OS DATA MODEL EQU 0 ; == 0 : Small data memory model
#endif ; == 1 : Medium data memory model
; == 2 : Large data memory model

To configure the assembly file for the medium data model, the token 0s DaTa MODEL must be set to a
value of one, as shown in the following table:

Table 2-15 Medium memory model

#ifndef OS_DATA MODEL

OS DATA MODEL EQU 1 ; == 0 : Small data memory model
#endif ; == 1 : Medium data memory model
; == 2 : Large data memory model

To configure the assembly file for the large data model, the token os_paTa MODEL must be set to a value
of two, as shown in the following table:

Table 2-16 Large memory model

#ifndef OS_DATA MODEL

0S_DATA MODEL EQU 2 ; == 0 : Small data memory model
#endif ; == 1 : Medium data memory model
; == 2 : Large data memory model

The value set in the distribution file is for the large model, as the large model is a superset of the other 2
models.

Alternatively, it is possible to overload the 0s paTa MODE value set in Abassi MSP430X IAR.s by

using the assembler command line option -D and specifying the desired data model. In the following
example, the medium data model is selected:

Table 2-17 Command line set of 0s_DATA MODEL

2430 .. -DOS_DATA MODEL=1

Rev 1.7 Page 16

Abassi RTOS Port — MSP430X — IAR 2012.04.21

The data model can also be selected through the GUI, in the “Assembler / Preprocessor” menu, as shown in
the following figure:

Options for node "Dema_4_MSPA30X_TA|

Category: Factary Settings

General Options
C/C++ compiler
Assembler

I Custom Build | Language | Cutput | List | Preprocessor | Diagnostics I Edra Opticr15|
Build Actions

Linker [T lanore standard include directories STOOLKIT_DIRSMNGY,

Debugger

FET Debugger
Simulator Additional include directories: {one per line)

Defined symbals: {one per line)
05_DATA_MODEL=1 -

[0K] [Cancel

Figure 2-8 GUI set of 0s_DATA MODEL

2.5.2 Option --pic

The compiler option --pic configures the compiler to use a calling convention for position independent
code. This affects the implementation of all assembly-coded functions in the file
Abassi MSP430X IAR.s. If this option is explicitly specified in the “Extra Options” in the compiler
configuration, or if the feature is enabled through the “Position-independent code” in the “General
Options” menu, then the token 0s_0pT pic, defined in the file Abassi MSP430xX IAR.s around line
60, must be set to a non-zero value, as shown in the following table:

Table 2-18 Position independent code

#ifndef OS_OPT_ pic
0S OPT pic EQU 1 ; Set to != 0 if the "C" option --pic is used
#endif

If the compiler is not configured to generate position independent code, leave the token 0s OPT pic set
to a zero value, as originally supplied in the distribution.

Table 2-19 Non- position independent code

#ifndef OS _OPT pic
0S OPT pic EQU 0 ; Set to != 0 if the "C" option --pic is used
#endif

Rev 1.7 Page 17

Abassi RTOS Port — MSP430X — IAR 2012.04.21

Alternatively, it is possible to overload the 0s 0pT pic value set in Abassi MSP430X_ IAR.s by using
the assembler command line option -p and specifying the required code generation model. In the
following example, the code is made position independent:

Table 2-20 Command line set of os_oPT_ _pic

a430 .. -DOS_OPT__ pic=1

The setting of 0S_ OPT pic can also be selected through the GUI, in the “Assembler / Preprocessor”
menu, as shown in the following figure:

Options for node "Demao_4_MSPA30X_IA|

Category: Factary Settings

General Options
C/C++ compiler
Assembler
Custom Build | Language | Cutput | List | Preprocessor | Diagnostics I Extra Opticr15|
Build Actions
Linker [T lanore standard include directories STOOLKIT_DIRSMNGY,
Debugger

FET Debugger
Simulator Additional include directories: {one per line)

Defined symbals: {one per line)
0S_OPT__pic=1 -

[Ok] [Cancel

Figure 2-9 GUI set of 0s_OPT_ _pic

2.5.3 Option -lock_r4/--regvar_r4

The “C” compiler can be configured either to not use the register r4, with the option -1ock r4, or to use
r4 as a global register, with the option --regvar r4. This affects the implementation of the assembly-
coded functions in the file Abassi MSP430X IAR.s. If either of these two options is explicitly specified
in the “Extra Options” in the compiler configuration, or if either “__regvar variables” or “Not used” is
selected in the “C/C++ compiler / Code” menu, then the token 0S 0PT lock_ r4, defined in the file
Abassi MSP430x_IAR.s around line 50, must be set to a value of 1 (MUST be one), as shown in the
following table:

Table 2-21 r4 used as a global register

#ifndef OS_OPT_ lock r4
OS_OPT lock r4 EQU 1 ; Set to != 0 if the "C" option --lock r4 is used
#endif ; Set to 1 (ONE!!!) if the "C" option --lock r4 is used

Rev 1.7 Page 18

Abassi RTOS Port — MSP430X — IAR 2012.04.21

If the compiler is not configured to reserve r4 as a global variable, but can use it as any other registers,
leave the token 0s_OPT lock r4 setto a zero value, as originally supplied in the distribution.

Table 2-22 r4 not used as a global register

#ifndef OS_OPT_ lock r4
0S OPT lock r4 EQU 0 ; Set to != 0 if the "C" option --lock r4 is used
#endif ; Set to 1 (ONE!!!) if the "C" option --lock r4 is used

Alternatively, it is possible to overload the 0s 0PT lock r4 value set in Abassi MSP430X IAR.s by
using the assembler command line option -p and specifying the required usage of the r4 register. In the
following example, the register is reserved as a global register:

Table 2-23 Command line set of 0s_0OPT__lock_r4

a430 .. -DOS_OPT lock r4=1

The usage of r4 can also be set through the GUI, in the “Assembler / Preprocessor” menu, as shown in the
following figure:

Options for node "Demo_d4_MSP430X_IAl

Cateqony: Factary Settings

General Options
C/C++ compiler
Assembler
Custom Build | Language | Output | List | Preprocessor | Diagnostics I Extra Optior15|
Build Actions
Linker [lanore standard include directories STOOLKIT_DIRSMNCY
Debugger

FET Debugger
Simulator Additional include directories: {one per ling)

Defined symbals: {one per line)
05_0OPT__lock _rd=1 -

[0K] [Cancel

Figure 2-10 GUI set of 0s_OPT__lock_r4

Rev 1.7 Page 19

Abassi RTOS Port — MSP430X — IAR 2012.04.21

2.5.4 Option -lock_r5/--regvar_r5

The “C” compiler can be configured either to not use the register 5, with the option -1ock r5, or to use
r5 as a global register, with the option --regvar r5. This affects the implementation of the assembly-
coded functions in the file Abassi MSP430X IAR.s. If either of these two options is explicitly specified
in the “Extra Options” in the compiler configuration, or if either “__regvar variables” or “Not used” is
selected in the “C/C++ compiler / Code” menu, then the token 0S 0PT lock_ r5, defined in the file
Abassi MSP430X IAR.s around line 55, must be set to a value of 1 (MUST be one), as shown in the
following table:

Table 2-24 r5 used as a global register

#ifndef OS_OPT__ lock r5
0S_OPT lock r5 EQU 1 ; Set to != 0 if the "C" option --lock r5 is used
#endif ; Set to 1 (ONE!!!) if the "C" option --lock r5 is used

If the compiler is not configured to reserve r5 as a global variable, but it can use it as any other registers,
leave the token 0S_0PT lock_ r5 setto a zero value, as originally supplied in the distribution.

Table 2-25 r5 not used as a global register

#ifndef OS OPT lock rb
0S OPT lock r5 EQU 0 ; Set to != 0 if the "C" option --lock r5 is used
#endif ; Set to 1 (ONE!!!) if the "C" option --lock r5 is used

Alternatively, it is possible to overload the 0s_0PT lock r5 value setin Abassi MSP430X IAR.s by
using the assembler command line option -b and specifying the required usage of the r5 register. In the
following example, the register is reserved as a global register:

Table 2-26 Command line set of 0s_0OPT__lock_r5

a430 .. -DOS_OPT__lock_r5=1

Rev 1.7 Page 20

Abassi RTOS Port - MSP430X - IAR 2012.04.21

The usage of r5 can also be set through the GUI, in the “Assembler / Preprocessor” menu, as shown in the
following figure:

Cptions for node "Demo_4_MSP430X_IAR

Categany: Factany Settings

General Options
C/C++ compiler
Assembler
Custom Build | Language | Cutput | List | Preprocessor | Diagnostics I Edra Optior15|
Build Actions
Linker |:| lgnore standard include directories STOOLKIT_DIRSUNCY
Debugger

FET Debugger
Simulatar Addtional include directories: {one per line)

Defined symbals: {one per line)
05_OPT__lock_r5=1

[0K] [Cancel

Figure 2-11 GUI set of 0s_OPT_ _lock_r5

2.5.5 _ regvar Declaration

If the “C” declaration __ regvar is used for registers other than r4 and 5, then the context save code in
the assembly file Abassi MSP430x_IAR.s needs to be modified. To understand what to modify, look at
the effect the tokens 0s OPT 1lock r4 and 0S OPT lock r5 have on the generated code. The
registers requested to be left untouched by the compiler should never be between r12 and r15, otherwise
most of the functions, and the interrupt dispatcher, in abassi MSP430X IAR.s Will have to be modified
also.

Rev 1.7 Page 21

Abassi RTOS Port — MSP430X — IAR 2012.04.21

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt
context. Normally, when coding with the IAR Embedded Workbench, an interrupt function is specified
with the interrupt directive. But for all interrupt sources (except for the reset), the Abassi RTOS
provides an interrupt dispatcher, which allows it to be interrupt-aware. This dispatcher achieves two goals.
First, the kernel uses it to know if a request occurs within an interrupt context or not. Second, using this
dispatcher reduces the code size, as all interrupts share the same code for the decision making of entering
the kernel or not at the end of the interrupt.

The distribution makes provision for 64 sources of interrupts, as specified by the token
OS_INT VECT SIZE, in the file Abassi MsP430x IAR.s. If the target device uses a 16 or 32 entry
interrupt vector table, consult Section 2.4 to understand how to set Abassi to support the smaller table.

3.1 Interrupt Handling

Attaching a function to an interrupt is quite straightforward. All there is to do is use the RTOS component
0SisrInstall () to specify the interrupt priority and the function to be attached to that interrupt priority.
For example, Table 3-1 shows the code required to attach the TIMERA interrupt (on a MSP4305438) to the
RTOS timer tick handler (TIMtick):

Table 3-1 Attaching a Function to an Interrupt

#include “Abassi.h”

OSstart ()

OSisrInstall (54, &TIMtick);
/* Set-up the count reload and enable SysTick interrupt */

.. /* More ISR setup */

0OSeint (1) ; /* Global enable of all interrupts */

Alternatively, instead of using a hard coded number, the standard definition supplied by the file msp430.h
can be used. These definitions are set to the vector table index, specified in bytes; since 0SisrIntall ()
uses the priority value, these definitions must be divided by 2, as shown in Table 3-2:

Table 3-2 Attaching a Function to an Interrupt

#include “Abassi.h”
#include <msp430.h>
OSstart () ;

OSisrInstall (TIMERO_AO_VECTOR/Z, &TIMtick) ;
/* Set-up the count reload and enable SysTick interrupt */

.. /* More ISR setup */

0OSeint (1) ; /* Global enable of all interrupts */

Rev 1.7 Page 22

Abassi RTOS Port — MSP430X — IAR 2012.04.21

NOTE: The function to attach to an interrupt is a regular function, not one declared with the Embedded
Workbench specific _interrupt prefix statement.

NOTE: osisrInstall () uses the interrupt priority number. As an example, the non-maskable interrupt
has a priority of 14 when the device uses a table of 16 interrupt, a value of 30 when the device
uses a table of 32 interrupts, and 62 when the device uses a table of 64 interrupts.

At start-up, once osstart () has been called, all 0s_ N INTERRUPTS interrupt handler functions are set to
a “do nothing” function, named o0sinvalidIsr(). If an interrupt function is attached to an interrupt
number using the osisriInstall () component before calling osstart (), this attachment will be
removed by 0Sstart (), S0 0OSisrInstall () should never be used before osstart () hasran. When an
interrupt handler is removed, it is very important and necessary to first disable the interrupt source, then the
handling function can be set back t0 0SinvalidIsr (). Thisis shown in Table 3-3:

Table 3-3 Invalidating an ISR handler

#include “Abassi.h”

/* Disable the interrupt source */
OSisrInstall (Number, &0SinvalidISR);

When an application needs to disable/enable the interrupts, the RTOS supplied functions osdint () and
0Seint () should be used.

3.2 Unused interrupts

The assembly file Abassi MSP430xX_IAR.s, assupplied in the distribution, includes the prologue code for
the interrupt dispatcher for all sources of interrupts. If the code memory space is becoming a bit short,
removing the prologue for unused interrupts will help recover memory from that dead code.

Removing the interrupt dispatcher prologue for an unused interrupt is a three-step process. First, the
unused interrupt vector must be replaced in the interrupt vector table. This table is located at around line
250, at the label vectTb1, and each interrupt entry is defined as shown in the following:

Table 3-4 Entry in the interrupt vector table

DCl6 INTXX handler ; Priority XX interrupt

The desired table entry must be attached to a do-nothing interrupt handler; it is preferable to attach a do-
nothing interrupt handler in case of spurious interrupts. To attach the do-nothing interrupt handler, replace
the desired vector table entry by the following:

Table 3-5 Unused interrupt vector table

DC16 INT NO_handler ; Priority XX interrupt

Rev 1.7 Page 23

Abassi RTOS Port — MSP430X — IAR 2012.04.21

The second step is to create the do-nothing interrupt handler. This step only needs to be performed once, as
the same do-nothing handler should be re-used for all unused interrupts. The do-nothing interrupt handler
code must be located in the 1srR cope section. Therefore, insert the following code right after the
definition of the ISR_PROLOGUE macro, right before the INT0O0 handler label; this should be around line
330 in the file:

Table 3-6 Do-nothing interrupt handler

INT NO_handler: ; Entry point of the do-nothing ISR handler
reti ; Return from the interrupt

The last step is to remove the unused interrupt dispatcher prologue code. Each interrupt has an interrupt
dispatcher prologue, where the prologue is always defined as follows:

Table 3-7 Interrupt dispatcher prologue

INTXX handler:
ISR PROLOGUE XX

Commenting out the 1SR _PROLOGUE line for the unused interrupt will remove the prologue code. It is not
necessary to remove the label.

Table 3-8 Interrupt dispatcher prologue removal

INTXX handler:
77+ ISR_PROLOGUE XX

3.3 Fast Interrupts

Fast interrupts are supported on this port. A fast interrupt is an interrupt that never uses any component
from Abassi and as the name says, is desired to operate as fast as possible. To set-up a fast interrupt, all
there is to do is to set the address of the interrupt function in the corresponding entry in the interrupt vector
table that is used by the MSP430X processor. The beginning of the interrupt vector table is located in the
file Abassi MSP430X_IAR.s around line 250, at the label vectTbl. For example, on a MSP430F5438
device, TIMERA is set to the priority 54. This is the entry in the table for TTMERA in the distribution file:

Table 3-9 MSP430F5438 TIMERA Regular Interrupt

DC16 INT54 handler ; Priority 54 interrupt

To attach a fast interrupt handler to the TTMERA, assuming the name of the interrupt function to attach is
TIMERA handler (), replace previous line a s shown in the next table:

Table 3-10 MSP430F5438 TIMERA Fast Interrupt

EXTERN TIMERA handler
DC16 TIMERA handler ; Priority 54 interrupt

It is important to add the EXTERN statement otherwise there will be an error during the assembly of the file.

Rev 1.7 Page 24

Abassi RTOS Port — MSP430X — IAR 2012.04.21

NOTE: If an Abassi component is used inside a fast interrupt, the application will misbehave.

NOTE: Fast interrupt handlers must use the IAR keyword _ interrupt, Or the reti must be used when
a fast interrupt is coded in assembly language.

Even if the hybrid interrupt stack feature is enabled (see Section 2.1), fast interrupts will not use that stack.
This translates into the need to reserve room on all task stacks for the possible nesting of fast interrupts. To
make the fast interrupts also use a hybrid interrupt stack, a prologue and epilogue must be used around the
call to the interrupt handler. The prologue and epilogue code to add is almost identical to what is done in
the regular interrupt dispatcher. Reusing the example of the TIMERA on a MSP430F5438 device, this
would look something like:

Table 3-11 Fast Interrupt with Dedicated Stack

DC16 TIMERA preHandler ; Priority 6 interrupt

RSEG ISR CODE:CODE:ROOT
EXTERN TIMERA handler

TIMERA preHandler:

movx.a sp, #(TIMERA stack-4) ; Memo current sp on the hybrid stack
movx.a #(TIMERA stack-4), sp ; Set sp to the new stack

pushm.a #4, rl5 ; Context save on the hybrid stack
calla TIMERA handler ; Enter the interrupt handler

popm.a #4, rl5 ; Context restore

popx.a Sp ; Recover original sp

reti ; Exit from the interrupt

RSEG RSEG DATAl6 N:DATA(1)

DS16 (TIMERA stack size+l)/2 ; Room for the fast interrupt stack

TIMERA stack:

The same code, with unique labels, must be repeated for each of the fast interrupts. As the use of the
hybrid stack creates the prologue-epilogue for the interrupt context, the function called must be a regular
“C” function, not one declared with the _interrupt directive. If the GIE (global interrupt enable) bit in
the status register is not set in the interrupt function, and the nesting of interrupts is not allowed (Section
2.2), then the same hybrid stack memory can be re-used, as, by default, the MSP430X interrupt controller
only allows the servicing of a single interrupt at any time.

Rev 1.7 Page 25

Abassi RTOS Port — MSP430X — IAR 2012.04.21

3.4 Nested Interrupts

The interrupt dispatcher allows the nesting of interrupts; nested interrupt means an interrupt of any priority
will interrupt the processing of an interrupt currently being serviced. Refer to Section 2.2 for information
on how to enable or disable interrupt nesting.

The Abassi RTOS kernel never disables interrupts, but there are a few very small regions within the
interrupt dispatcher where interrupts are temporarily disabled when nesting is enabled (a total of between
10 to 20 instructions).

The kernel is never entered as long as interrupt nesting is occurring. In all interrupt functions, when a
RTOS component that needs to access some kernel functionality is used, the request(s) is/are put in a
queue. Only once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the
kernel entered at the end of the interrupt, when the queue contains one or more requests, and when the
kernel is not already active. This means that only the interrupt handler function operates in an interrupt
context, and only the time the interrupt function is using the CPU are other interrupts of equal or lower
level blocked by the interrupt controller.

Rev 1.7 Page 26

Abassi RTOS Port — MSP430X — IAR 2012.04.21

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,
the stack holds the register context that was preserved when the task got blocked or preempted. Also, when
an interrupt occurs, the register context of the running task must be preserved in order for the operations
performed during the interrupt to not corrupt the contents of the registers used by the task when it got
interrupted. For the MSP430X, the context save contents of a blocked or pre-empted task is different from
the one used in an interrupt. The following table lists the number of bytes required by each type of context
save operation for each of the data memory models:

Table 4-1 Context Save Stack Requirements

Context Save Medium
Interrupt context save (no Hybrid stack) 14 bytes 24 bytes 24 bytes
Interrupt context save (Hybrid stack) 12 bytes 20 bytes 20 bytes

The numbers for the interrupt dispatcher context save include the 4 bytes the processor pushes on the stack
when it enters the interrupt servicing.

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is
simply that every task in the application needs at least the area to preserve the task context when it is
preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in
the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So, if N
levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR
context save on each task stack, plus any added stack used by the interrupt handler functions. Finally, add
to all this the stack required by the code implementing the task operation.

NOTE: The MSP430 processor needs alignment on 2 bytes for some instructions accessing memory.
When stack memory is allocated, Abassi guarantees the alignment. This said, when sizing
0S_STATIC STACK OfF OS ALLOC SIZE, make sure to take in account that all allocation
performed through these memory pools are by block size multiple of 2 bytes.

If the hybrid interrupt stack (see Section 2.1) is enabled, then the above description changes: it is only
necessary to reserve room on task stacks for a single interrupt context save and not the worst-case nesting.
With the hybrid stack enabled, the second, third, and so on interrupts use the stack dedicated to the
interrupts. The hybrid stack is enabled when the os Isr STACK token in the file
Abassi MSP430X_IAR.s is Set to a non-zero value (Section 2.1).

Rev 1.7 Page 27

Abassi RTOS Port — MSP430X — IAR 2012.04.21

5 Search Set-up

The Abassi RTOS build option os_searcH rasT offers four different algorithms to quickly determine the
next running task upon task blocking. The following table shows the measurements obtained for the
number of CPU cycles required when a task at priority O is blocked, and the next running task is at the
specified priority. The number of cycles includes everything, not just the search cycle count. The number
of cycles was measured using the TIMERA peripheral, which was set to increment the counter once every
CPU cycle. The second column is when 0os SEARCH FAST is set to zero, meaning a simple array
traversing. The third column, labeled Look-up, is when 0s_SEARCH FAST is set to 1, which uses an 8 bit
look-up table. Finally, the last column is when 0s SEARCH FAST is set to 4 (MSP430X int are 16 bits, so
2"4), meaning a 16 bit look-up table, further searched through successive approximation. The compiler
optimization for this measurement was set to Level High / Speed optimization. The RTOS build options
were set to the minimum feature set, except for option 05 PRIO CHANGE Set to non-zero. The presence of
this extra feature provokes a small mismatch between the result for a difference of priority of 1, with
0S_SEARCH_FAST Set to zero, and the latency results in Section 7.2.

NOTE: The results for the search have only been conducted using the small memory model, as it is
assumed the code generated using the two other models should exhibit the same sequences of
instructions.

When the build option os_SEARCH ALGO is set to a negative value, indicating to use a 2-dimensional
linked list search technique instead of the search array, the number of CPU is constant at 243 cycles.

Rev 1.7 Page 28

Abassi RTOS Port — MSP430X — IAR 2012.04.21

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation
1 251 290 350
2 258 297 351
3 265 304 358
4 272 311 353
5 279 318 360
6 286 325 361
7 293 332 368
8 300 293 357
9 307 300 364
10 314 307 365
11 321 314 372
12 328 321 367
13 335 328 374
14 342 335 375
15 349 342 382
16 356 303 353
17 363 310 360
18 370 317 361
19 377 324 368
20 384 331 363
21 391 338 370
22 398 345 371
23 405 352 378
24 412 313 367

The third option, when 0s_SEARCH FAST is set to 4, never achieves a lower CPU usage than when
OS_SEARCH_FAST is set to zero or 1. This is understandable, as the MSP430X possesses a barrel shifter,
but the number of bits to shift is fixed by the instruction. When os_sEARCH FAST is set to zero, each extra
priority level to traverse requires exactly 7 CPU cycles. When oS _SEARCH FAST is set to 1, each extra
priority level to traverse also requires exactly 7 CPU cycles, except when the priority level is an exact
multiple of 8; then there is a sharp reduction of CPU usage. Overall, setting 0S_SEARCH FAST to 1 adds
an extra 39 cycles of CPU for the search compared to setting 0S_SEARCH FAST to zero. But when the next
ready to run priority is less than 8, 16, 24, ... then there is an extra 10 cycles needed, but without the 8
times 7 cycles accumulation.

Rev 1.7 Page 29

Abassi RTOS Port — MSP430X — IAR 2012.04.21

The key observation, when looking at this table, is that the first option (0s_SEARCH FAST set to 0) delivers
better CPU performance than the second option (0s_SEARCH FAST set to 1) when the search spans less
than 9 priority levels. So, if an application has tasks spanning less than 9 priority levels, the build option
0S_SEARCH_FAST should be set to O; for all other cases, the build option 0s_searcH FaAST should be set
to 1.

Setting the build option 0s SEARCH ALGO to a non-negative value minimizes the time needed to change
the state of a task from blocked to ready to run, but not the time needed to find the next running task upon
blocking/suspending of the running task. If the application needs are such that the critical real-time
requirement is to get the next running task up and running as fast as possible, then set the build option
0S_SEARCH_ALGO to a negative value.

Rev 1.7 Page 30

Abassi RTOS Port — MSP430X — IAR 2012.04.21

6 Chip Support

No chip support is provided with the distribution code because the MSP430Ware software library is
available from Texas Instruments, and it includes a high level API for all the peripherals available on the
MSP430X devices. Even though the primary target for the MSP430Ware software library is with Code
Composer Studio as the GUI, a standalone version is also available.

Rev 1.7 Page 31

Abassi RTOS Port — MSP430X — IAR 2012.04.21

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the
RTOS is used on the MSP430X and compiled with IAR Embedded Workbench. The CPU cycles are
exactly the CPU clock cycles, not a conversion from a duration measured on an oscilloscope then converted
to a number of cycles.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the
smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the
features. For both cases, names are not part of the build. This feature was removed from the metrics
because it is highly probable that shipping products utilizing this RTOS will not include the naming of
descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of
components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for
the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One
should interpret these numbers as the “very likely” numbers for the released version of the RTOS.

Rev 1.7 Page 32

Abassi RTOS Port - MSP430X - IAR 2012.04.21

The code memory required by the RTOS includes the “C” code and assembly language code used by the
RTOS. The code optimization settings used for the memory measurements are:

1. Optimization Level: High

2. Optimize for: Size

3. All transformations are enabled

4. Aggressive unrolling: Disabled
5. Aggressive inlining: Disabled

crars s oo oo (=

Cateqgory: Facton Settings

General Options [Multi-file: Compilation
Dizzard Unuzed Publics
Assembler
Custom Build | Language 1 I Language 2 I Code | Optimizations | Dutput I List I RN
Build Actions .
Linker Level Enabled transformations:
Debugger (©) None [¥] Common subexpression elimination
FET Debugger) Low Loop unrolling
Simulator) Medium Function inlining
P [¥]Code metion
@ Hgh [¥] Type-based alizs analysis

[Aggressive unrolling
[Aggressive infining

[0K][Cancel]

Figure 7-1 Memory Measurement Code Optimization Settings

Rev 1.7 Page 33

Abassi RTOS Port — MSP430X — IAR 2012.04.21

Table 7-1 “C” Code Memory Usage
Description Small Model Medium Model Large Model

Minimal Build < 600 bytes < 600 bytes < 700 bytes

+ Runtime service creation / static memory | < 850 bytes | < 825 bytes < 975 bytes

+ Multiple tasks at same priority < 950 bytes | < 925 bytes < 1100 bytes

+ Runtime priority change < 1400 bytes < 1400 bytes < 1675 bytes
+ Mutex priority inheritance
+ FCFS

+ Task suspension

+ Timer & timeout < 1950 bytes < 1950 bytes < 2300 bytes
+ Timer call back

+ Round robin

+ Events < 2650 bytes < 2625 bytes < 3150 bytes
+ Mailbox
Full Feature Build (no names) < 3175 bytes < 3175 bytes < 3775 bytes

Full Feature Build (no names/no runtime | < 2825 bytes < 2825 bytes < 3375 bytes
creation)

Full Feature Build (no names/no runtime | < 3200 bytes < 3200 bytes < 3775 bytes
creation)

+ Timer services module

Table 7-2 Assembly Code Memory Usage

Description Small Model Medium Model Large Model
ASM code 134 bytes 132 bytes 140 bytes
Vector Table (per interrupt) + 2 bytes + 2 bytes + 2 bytes
Interrupt prologue (Per interrupt) +10 bytes +10 bytes +10 bytes
Hybrid Stack Enabled +20 bytes +20 bytes +20 bytes
Nested interrupts Enabled + 8 bytes + 8 bytes + 8 bytes
Oscillator bits preservation Enabled +14 bytes +14 bytes +14 bytes
Position independent code Enabled +56 bytes +56 bytes +56 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its
own data memory to operate, and second, most of the services offered by the RTOS require data memory
for each instance of the service. As the build options affect either the kernel memory needs or the service
descriptors (or both), an interactive calculator has been made available on the Code Time Technologies
website.

Rev 1.7 Page 34

Abassi RTOS Port — MSP430X — IAR 2012.04.21

7.2 Latency

Latency of operations has been measured on an Olimex MSP430-5438STK Evaluation board populated
with an 18 MHz MSP430F5438 device. All measurements have been performed on the real platform,
using the timer peripheral TIMERA set-up to be clocked at the same rate as the CPU. This means the
interrupt latency measurements had to be instrumented to read the TIMERA counter value. This
instrumentation can add up to 5 or 6 cycles to the measurements. The code optimization settings used for
the latency measurements are:

1. Optimization level: High

2. Optimize for: Speed

3. All transformations are enabled

4. Aggressive unrolling: Disabled
5. Aggressive inlining: Disabled

Options for node "Dem_4_Msp430x_LAR- [

Categary: Factary Settings
General Options [Multifile Compilation
C/C+-+ compiler Dizzard Unuzed Publics
Assembler
Custom Build | Language 1 I Language 2 I Code | Optimizations | Qutput I List I Flutaf i
Build Actions .
Linker Level Enabled transformations:
Debugger (7) None [¥] Comman subexpression elimination
FET Debugger @ Low Loap urroling
Simulator) Mediam Function inlining
a:\ ; n [¥] Code motion
& g [¥] Type-based alias analysis
Speed -

[Aggressive unrolling
[Aagressive inlining

[Ok][Cancel]

Figure 7-2 Latency Measurement Code Optimization Settings

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very
good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three
tasks were involved:

1. Adam & Eve set to a priority value of 0;
2. Alow priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

Rev 1.7 Page 35

Abassi RTOS Port — MSP430X — IAR 2012.04.21

The sets of 5 measurements are performed on a semaphore, on the event flags of a task, and finally on a
mailbox. The first 2 latency measurements use the component in a manner where there is no task
switching. The third measurements involve a high priority task getting blocked by the component. The
fourth measurements are about the opposite: a low priority task getting pre-empted because the component
unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,
through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component
is used until it is back from the component. For these measurement there is no task switching. This means:

Table 7-3 Measurement without Task Switch

Start CPU cycle count
SEMpost (..); or EVTset(..); or MBXput();
Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right
before the component is used until it is back from the component. For these measurement there is no task
switching. This means:

Table 7-4 Measurement without Blocking

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the
component triggers the unblocking of a higher priority task until the latter is back from the component used
that blocked the task. This means:

Table 7-5 Measurement with Task Switch

main ()

{

SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);
Stop CPU cycle count

}

TaskPriol ()
{

Start CPU cycle count
SEMpost (..) ; or EVTset(..); or MBXput(..);

Rev 1.7 Page 36

Abassi RTOS Port — MSP430X — IAR 2012.04.21

The forth set of measurements counts the number of CPU cycles elapsed starting right before the
component blocks of a high priority task until the next ready to run task is back from the component it was
blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

main ()

{

Start CPU cycle count
SEMwait (.., -1); or EVTwait(.., -1); or MBXget(.., -1);

}

TaskPriol ()
{

SEMpost (..) ; or EVTset(..); or MBXput(..);
Stop CPU cycle count

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt
using the component, until the task that was blocked becomes the running task and is back from the
component used that blocked the task. The interrupt latency measurement includes everything involved in
the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the
interrupt code. The interrupt function, attached with 0sisrInstall (), is simply atwo line function that
uses the appropriate RTOS component followed by a return.

Rev 1.7 Page 37

Abassi RTOS Port — MSP430X — IAR 2012.04.21

The following tables list the results obtained, where the cycle count is measured using the TIMERA
peripheral on the MSP430. This timer is configured to increment its counter by 1 at every CPU cycle. As
was the case for the memory measurements, these numbers were obtained with a beta release of the RTOS.
It is possible the released version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR
function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt
stack and branch to the address specified in the interrupt vector table. For this measurement, the MSP30
TIMERA is used to trigger the interrupt and measure the elapsed time.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used
between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in
the 0SisrInstall(). The interrupt overhead when entering the kernel is calculated using the results
from the third and fifth tests. Finally, the OS context switch is the measurement of the number of CPU
cycles it takes to perform a task switch, without involving the wrap-around code of the synchronization
component.

The hybrid interrupt stack feature was not enabled, neither was the oscillator bit preservation, nor the
interrupt nesting, in any of these tests.

In the following table, the latency numbers between parentheses are the measurements when the build
option 0s_SEARCH_ ALGO is set to a negative value. The regular number is the latency measurements when
the build option 0s_SEARCH ALGO is set to 0.

Table 7-7 Latency Measurements (Small Model)

Description Minimal Features Full Features
Semaphore waiting no blocking 131 (125) 192 (196)
Semaphore posting with task switch 215 (242) 331 (368)
Semaphore waiting with blocking 229 (221) 363 (365)
Semaphore posting in ISR with task switch 359 (380) 487 (518)
Event setting no task switch n/a 179 (183)
Event getting no blocking n/a 218 (222)
Event setting with task switch n/a 358 (395)
Event getting with blocking n/a 390 (392)
Event setting in ISR with task switch n/a 515 (548)
Mailbox writing no task switch n/a 243 (247)
Mailbox reading no blocking n/a 253 (257)
Mailbox writing with task switch n/a 400 (437)
Mailbox reading with blocking n/a 435 (437)
Mailbox writing in ISR with task switch n/a 562 (594)
Interrupt Latency 26 26
Interrupt overhead entering the kernel 144 (138) 156 (150)
Interrupt overhead NOT entering the kernel 52 52

Context switch 45 46

Rev 1.7 Page 38

Abassi RTOS Port — MSP430X — IAR 2012.04.21

Table 7-8 Latency Measurements (Medium Model)

Description Minimal Features Full Features
Semaphore posting no task switch 145 (139) 200 (204)
Semaphore waiting no blocking 147 (141) 208 (212)
Semaphore posting with task switch 248 (275) 364 (401)
Semaphore waiting with blocking 261 (253) 396 (397)
Semaphore posting in ISR with task switch 413 (435) 540 (571)
Event setting no task switch n/a 196 (200)
Event getting no blocking n/a 234 (238)
Event setting with task switch n/a 391 (428)
Event getting with blocking n/a 423 (424)
Event setting in ISR with task switch n/a 568 (601)
Mailbox writing no task switch n/a 260 (264)
Mailbox reading no blocking n/a 274 (278)
Mailbox writing with task switch n/a 436 (473)
Mailbox reading with blocking n/a 470 (471)
Mailbox writing in ISR with task switch n/a 618 (650)
Interrupt Latency 31 31
Interrupt overhead entering the kernel 165 (160) 176 (170)
Interrupt overhead NOT entering the kernel 60 60

Context switch 62 62

Rev 1.7 Page 39

Abassi RTOS Port — MSP430X — IAR 2012.04.21

Table 7-9 Latency Measurements (Large Model)

Description Minimal Features Full Features
Semaphore posting no task switch 165 (159) 220 (220)
Semaphore waiting no blocking 166 (160) 227 (227)
Semaphore posting with task switch 283 (318) 424 (448)
Semaphore waiting with blocking 307 (299) 463 (444)
Semaphore posting in ISR with task switch 487 (518) 626 (645)
Event setting no task switch n/a 217 (217)
Event getting no blocking n/a 254 (254)
Event setting with task switch n/a 453 (477)
Event getting with blocking n/a 491 (472)
Event setting in ISR with task switch n/a 657 (676)
Mailbox writing no task switch n/a 325 (325)
Mailbox reading no blocking n/a 340 (340)
Mailbox writing with task switch n/a 536 (560)
Mailbox reading with blocking n/a 583 (564)
Mailbox writing in ISR with task switch n/a 739 (758)
Interrupt Latency 29 29
Interrupt overhead entering the kernel 204 (200) 202 (197)
Interrupt overhead NOT entering the kernel 60 60

Context switch 68 69

Rev 1.7 Page 40

Abassi RTOS Port — MSP430X — IAR 2012.04.21

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build
Table 8-1: Case 0 build options

#define OS ALLOC SIZE /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS /* If event flags are supported */
#define OS_FCFS /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK /* If IdleTask supplied & if so, stack size */
#define OS LOGGING TYPE /* Type of logging to use */
#define OS MAILBOX /* If mailboxes are used */
#define OS_MAX PEND RQST /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK /* This test validates this */
#define OS MTX INVERSION /* To enable protection against priority inversion */
#define OS_NAMES /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS /* If operating with nested interrupts */
#define OS_PRIO CHANGE /* If a task priority can be changed at run time */
#define OS_PRIO_MIN /* Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN /* Use round-robin, value specifies period in uS */

#define OS RUNTIME /* If create Task / Semaphore / Mailbox at run time */

O O O O OO O OO OO OO O OO ODODONOOOOONOO OO O oo

#define OS_SEARCH ALGO /* If using a fast search */
#define OS_STARVE PRIO /* Priority threshold for starving protection */
#define OS_ STARVE RUN MAX /* Maximum Timer Tick for starving protection */
#define OS STARVE WAIT MAX /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC MBX /* If !'=0 how many mailboxes */
#define OS_STATIC NAME /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC SEM /* If !=0 how many semaphores and mutexes */
#define OS_STATIC STACK /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND /* If a task can suspend another one */
#define OS_TIMEOUT /* !=0 enables blocking timeout */
#define OS_TIMER CB /* !=0 gives the timer callback period */
#define OS_TIMER SRV /* !=0 includes the timer services module */
#define OS_TIMER US /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG /* If tasks have arguments */

Rev 1.7 Page 41

Abassi RTOS Port - MSP430X - IAR 2012.04.21
8.2 Case 1: + Runtime service creation / static memory
Table 8-2: Case 1 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When O0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 2 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS_PRIO MIN 2 /* Max priority, Idle = OS_PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 0 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !'=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.7

Page 42

Abassi RTOS Port - MSP430X - IAR 2012.04.21
8.3 Case 2: + Multiple tasks at same priority
Table 8-3: Case 2 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 0 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 0 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 0 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 0 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_ STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_ BUF_ MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 0 /* If a task can suspend another one */
#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */
#define OS_TIMER CB 0 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 0 /* !=0 enables timer & specifies the period in u$ */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.7

Page 43

Abassi RTOS

Port — MSP430X — IAR

2012.04.21

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend
Table 8-4: Case 3 build options

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

0S_ALLOC SIZE
0S_COOPERATIVE
0S_EVENTS
0S_FCFS
0S_IDLE_STACK
0S_LOGGING TYPE
0S_MAILBOX
0S_MAX PEND RQST
0S_MTX DEADLOCK
0S_MTX INVERSION
0S_NAMES
0S_NESTED INTS
0S_PRIO CHANGE
0S_PRIO MIN
0S_PRIO SAME
0S_ROUND ROBIN
0S_RUNTIME
0S_SEARCH ALGO
0S_STARVE_PRIO
0S_STARVE_RUN_MAX

0S_STARVE WAIT MAX

0S_STATIC BUF MBX
0S_STATIC MBX
0S_STATIC NAME
0S_STATIC SEM
0S_STATIC STACK
0S_STATIC TASK
0S_TASK SUSPEND
0S_TIMEOUT
0S_TIMER CB
0S_TIMER SRV
0S_TIMER US
0S_USE_TASK ARG

O OO OOk Uk Ul OO OO0 O0OO0ORFHFORFRENREF OOF O WOOoOOoRrR OoOOoOo

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

When !=0, RTOS supplied OSalloc

When 0: pre-emptive, when non-zero: cooperative */

If event flags are supported

Allow the use of 1lst come lst serve semaphore
If IdleTask supplied & if so, stack size

Type of logging to use

If mailboxes are used

Maximum number of requests in ISRs

This test validates this

To enable protection against priority inversion */

!= 0 when named Tasks / Semaphores / Mailboxes */
If operating with nested interrupts */
If a task priority can be changed at run time */
Max priority, Idle = OS PRIO MIN, AdameEve = 0 */
Support multiple tasks with the same priority */
Use round-robin, value specifies period in uS */
If create Task / Semaphore / Mailbox at run time */
If using a fast search */
Priority threshold for starving protection */
Maximum Timer Tick for starving protection */
Maximum time on hold for starving protection */
when OS_STATIC_MBOX != 0, # of buffer element */
If !=0 how many mailboxes */
If named mailboxes/semaphore/task, size in char */
If !=0 how many semaphores and mutexes */
if !=0 number of bytes for all stacks */
If !'=0 how many tasks (excluding A&E and Idle) */
If a task can suspend another one */
!'=0 enables blocking timeout */
!'=0 gives the timer callback period */
!'=0 includes the timer services module */
!=0 enables timer & specifies the period in uS */
If tasks have arguments */

*/

*/
*/
*/
*/
*/
*/
*/

Rev 1.7

Page 44

Abassi RTOS Port - MSP430X - IAR 2012.04.21
8.5 Case 4: + Timer & timeout / Timer call back / Round robin
Table 8-5: Case 4 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* If event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX 0 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.7

Page 45

Abassi RTOS Port - MSP430X - IAR 2012.04.21
8.6 Case 5: + Events / Mailboxes
Table 8-6: Case 5 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_EVENTS 0 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 0 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN 100000/* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO 0 /* Priority threshold for starving protection */
#define OS_STARVE RUN MAX 0 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX O /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !'=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 0 /* If tasks have arguments */

Rev 1.7

Page 46

Abassi RTOS Port - MSP430X - IAR 2012.04.21
8.7 Case 6: Full feature Build (no names)
Table 8-7: Case 6 build options
#define OS ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define 0OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 100 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !'=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.7

Page 47

Abassi RTOS Port - MSP430X - IAR 2012.04.21
8.8 Case 7: Full feature Build (no names / no runtime creation)
Table 8-8: Case 7 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS_ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 0 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 0 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 0 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */
#define OS_STATIC TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 0 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.7

Page 48

Abassi RTOS Port - MSP430X - IAR 2012.04.21
8.9 Case 8: Full build adding the optional timer services
Table 8-9: Case 8 build options
#define OS_ALLOC SIZE 0 /* When !=0, RTOS supplied OSalloc */
#define OS COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */
#define OS_ EVENTS 1 /* 1f event flags are supported */
#define OS_FCFS 1 /* Allow the use of lst come lst serve semaphore */
#define OS_IDLE STACK 0 /* If IdleTask supplied & if so, stack size */
#define OS_LOGGING TYPE 0 /* Type of logging to use */
#define OS_MAILBOX 1 /* If mailboxes are used */
#define OS_MAX PEND RQST 32 /* Maximum number of requests in ISRs */
#define OS_MTX DEADLOCK 0 /* This test validates this */
#define OS_MTX INVERSION 1 /* To enable protection against priority inversion */
#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */
#define OS_NESTED INTS 0 /* If operating with nested interrupts */
#define OS_PRIO CHANGE 1 /* If a task priority can be changed at run time */
#define OS PRIO MIN 20 /* Max priority, Idle = 0S PRIO MIN, AdameEve = 0 */
#define OS_PRIO SAME 1 /* Support multiple tasks with the same priority */
#define OS ROUND ROBIN -100000 /* Use round-robin, value specifies period in uS */
#define OS RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */
#define OS_SEARCH ALGO 0 /* If using a fast search */
#define OS_STARVE PRIO -3 /* Priority threshold for starving protection */
#define OS STARVE RUN MAX -10 /* Maximum Timer Tick for starving protection */
#define OS_STARVE WAIT MAX -100 /* Maximum time on hold for starving protection */
#define OS_STATIC_BUF MBX 100 /* when OS_STATIC MBOX != 0, # of buffer element */
#define OS_STATIC_ MBX 2 /* If !=0 how many mailboxes */
#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */
#define OS_STATIC_ SEM 5 /* If !=0 how many semaphores and mutexes */
#define OS_STATIC_ STACK 128 /* if !'=0 number of bytes for all stacks */
#define OS_STATIC TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */
#define OS_TASK SUSPEND 1 /* If a task can suspend another one */
#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */
#define OS_TIMER CB 10 /* !=0 gives the timer callback period */
#define OS_TIMER SRV 1 /* !=0 includes the timer services module */
#define OS_TIMER US 50000 /* !=0 enables timer & specifies the period in uS */
#define OS_USE TASK ARG 1 /* If tasks have arguments */

Rev 1.7

Page 49

