
Copyright Information

This document is copyright Code Time Technologies Inc. ©2011,2012. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of

Code Time Technologies Inc.

Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

Abassi RTOS

Porting Document

PIC32 – MPLAB/GCC Suite

Disclaimer

Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,

but not limited to, the implied warranties of merchantability and fitness for a particular purpose.

Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the

document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in

the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

MPLAB and PIC32 are registered trademarks of Microchip Technology Inc. MIPS32 and MIPS16e are registered trademarks of
MIPS Technology Inc. All other trademarks are the property of their respective owners.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 3

Table of Contents

1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS ... 6
1.2 LIMITATIONS ... 6

2 TARGET SET-UP .. 7

2.1 MIPS16E SET-UP ... 8
2.2 INTERRUPT STACK SET-UP ...12

3 INTERRUPTS ...14

3.1 INTERRUPT HANDLING ...14
3.1.1 Interrupt Installer ..14
3.1.2 Interrupt Request Auto-Clearing ...15

3.2 REGULAR INTERRUPTS ...18
3.3 FAST INTERRUPTS ...18
3.4 NESTED INTERRUPTS ..18

4 STACK USAGE...20

5 SEARCH SET-UP ...21

6 CHIP SUPPORT ...24

7 MEASUREMENTS ...25

7.1 MEMORY ..25
7.2 LATENCY ..28

8 APPENDIX A: BUILD OPTIONS FOR CODE SIZE ...33

8.1 CASE 0: MINIMUM BUILD ...33
8.2 CASE 1: + RUNTIME SERVICE CREATION / STATIC MEMORY ..34
8.3 CASE 2: + MULTIPLE TASKS AT SAME PRIORITY ...35
8.4 CASE 3: + PRIORITY CHANGE / PRIORITY INHERITANCE / FCFS / TASK SUSPEND36
8.5 CASE 4: + TIMER & TIMEOUT / TIMER CALL BACK / ROUND ROBIN ..37
8.6 CASE 5: + EVENTS / MAILBOXES ..38
8.7 CASE 6: FULL FEATURE BUILD (NO NAMES) ...39
8.8 CASE 7: FULL FEATURE BUILD (NO NAMES / NO RUNTIME CREATION) ..40
8.9 CASE 8: FULL BUILD ADDING THE OPTIONAL TIMER SERVICES ...41

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 4

List of Figures
FIGURE 2-1 PROJECT FILE LIST ... 7
FIGURE 2-2 MIPS16E CODE GENERATION SELECTION .. 8
FIGURE 2-3 MIPS16E LIBRARY SELECTION .. 9
FIGURE 2-4 GUI SET OF OS_USE_MIPS16E ..11
FIGURE 2-5 GUI SET OF OS_ISR_STACK ..13
FIGURE 3-1 GUI SET OF ISR AUTO-CLEARING ...17
FIGURE 7-1 MEMORY MEASUREMENT CODE OPTIMIZATION SETTINGS ...26
FIGURE 7-2 LATENCY MEASUREMENT CODE OPTIMIZATION SETTINGS ...28

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 COMMAND LINE SETTING FOR MIPS16E INSTRUCTION SET ... 8
TABLE 2-2 COMMAND LINE FOR MIPS16E LIBRARIES ... 9
TABLE 2-3 BUILD FOR 32 BIT APPLICATION ..10
TABLE 2-4 BUILD FOR 16 BIT APPLICATION ..10
TABLE 2-5 COMMAND LINE SET OF OS_USE_MIPS16E ..10
TABLE 2-6 COMMAND LINE SET OF OS_USE_MIPS16E ..10
TABLE 2-7 INTERRUPT STACK ENABLED ..12
TABLE 2-8 INTERRUPT STACK DISABLE ..12
TABLE 2-9 COMMAND LINE SET OF OS_ISR_STACK ...12
TABLE 2-10 COMMAND LINE SET OF OS_ISR_STACK ...12
TABLE 3-1 ATTACHING A FUNCTION TO AN INTERRUPT ...14
TABLE 3-2 INVALIDATING AN ISR HANDLER ..15
TABLE 3-3 INTERRUPT PAIRING CUTOFF VALUES ..15
TABLE 3-4 ISR AUTO-CLEARING CONTROL ...16
TABLE 3-5 ISR AUTO-CLEARING DISABLING ...16
TABLE 3-6 COMMAND LINE SET OF ISR AUTO-CLEARING ..16
TABLE 3-7 COMMAND LINE SET OF ISR AUTO-CLEARING ..16
TABLE 3-8 ISR FUNCTION WITH AUTO-CLEARING ..17
TABLE 3-9 ISR FUNCTION WITHOUT AUTO-CLEARING ..18
TABLE 3-10 REMOVING INTERRUPT NESTING ...18
TABLE 3-11 PROPAGATING INTERRUPT NESTING ..19
TABLE 4-1 CONTEXT SAVE STACK REQUIREMENTS ...20
TABLE 5-1 SEARCH ALGORITHM CYCLE COUNT ..22
TABLE 7-1 “C” CODE MEMORY USAGE ...27
TABLE 7-2 ASSEMBLY CODE MEMORY USAGE ..27
TABLE 7-3 MEASUREMENT WITHOUT TASK SWITCH ..29
TABLE 7-4 MEASUREMENT WITHOUT BLOCKING ...29
TABLE 7-5 MEASUREMENT WITH TASK SWITCH ..29
TABLE 7-6 MEASUREMENT WITH TASK UNBLOCKING ..30
TABLE 7-7 LATENCY MEASUREMENTS FOR 32 BITS INSTRUCTIONS ...30
TABLE 7-8 LATENCY MEASUREMENTS FOR MIPS16E INSTRUCTIONS ..32
TABLE 8-1: CASE 0 BUILD OPTIONS ..33
TABLE 8-2: CASE 1 BUILD OPTIONS ..34
TABLE 8-3: CASE 2 BUILD OPTIONS ..35
TABLE 8-4: CASE 3 BUILD OPTIONS ..36
TABLE 8-5: CASE 4 BUILD OPTIONS ..37
TABLE 8-6: CASE 5 BUILD OPTIONS ..38
TABLE 8-7: CASE 6 BUILD OPTIONS ..39
TABLE 8-8: CASE 7 BUILD OPTIONS ..40
TABLE 8-9: CASE 8 BUILD OPTIONS ..41

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 6

1 Introduction

This document details the port of the Abassi RTOS to the Microchip PIC32 family of microcontrollers.

The software suite used for this specific port is the MPLAB IDE using the GCC tool suite; the version used

for the port and all tests is Version 8.83.00.00.

1.1 Distribution Contents

The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

Abassi.h Include file for the RTOS

Abassi.c RTOS “C” source file

Abassi_PIC32_MPLAB.s RTOS assembly file for the PIC32 with MPLAB/GCC tool

suite

Demo_0_PIC32_MPLAB.c Demo code that runs on both the PIC32 Starter Kit and the

Olimex PIC32-WEB boards

AbassiDemo.h Build option settings for the demo code

1.2 Limitations

The Abassi RTOS port on the PIC32 does not support Fast Interrupts.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 7

2 Target Set-up

Very little is needed to set-up the MPLAB development environment in order to use the RTOS in an

application. All there is to do is add the files Abassi.c and Abassi_PIC32_MPLAB.s in the source files

of the application project, the file Abassi.h in the header files of the application project, and make sure

the three configuration settings in the file Abassi_PIC32_MPLAB.s (OS_USE_MIPS16E as described in

Section 2.1 , OS_ISR_STACK described in Section 2.2, and OS_ISR_CLR_CUTOFF as described in Section

3.1.2) are set according to the needs of the application. As well, update the include file path with the

location of Abassi.h.

Figure 2-1 Project File List

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 8

2.1 MIPS16e Set-up

The processor used on the PIC32 family of devices is the MIPS32 M4K processor, and this processor

architecture can decode two different sets of instructions: the native 32 bit (MIPS32) or the 16 bits

(MIPS16e) code compression instruction set. The MIPS16e instruction set is selected in MPLAB under the

“Build Options / MPLAB PIC32 C Compiler / General” window by selecting “Generate 16-bit code”. A

snapshot of the window is shown in Figure 2-2 below:

Figure 2-2 MIPS16e Code Generation Selection

If the compiler is used through the command line, the MIPS16e instruction set is selected with the option

-mips16, as shown below:

Table 2-1 Command line setting for MIPS16e instruction set

pic32-gcc … -mips16 …

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 9

The MIPS16e libraries are selected in MPLAB under the “Build Options / MPLAB PIC32 Linker / Library

Selection” window by selecting “Generate 16-bit code”. A snapshot of the window is shown in Figure 2-3

below:

Figure 2-3 MIPS16e Library Selection

If the linker is used through the command line with pic32-gcc, the MIPS16e instruction set libraries are

selected with the option -mips16, as shown below:

Table 2-2 Command line for MIPS16e libraries

pic32-gcc … -mips16 …

When code is generated with the MIPS16e instruction set, the number of registers used by the CPU is

reduced and the versatility of the function calling convention is reduced. This means it becomes possible to

achieve some CPU cycle count savings when performing task switching and handling interrupts when the

MIPS16e instruction set is selected, as the number of registers to preserve and restore is reduced compared

to the native MIPS32 register set.

NOTE: This implies that all application code, without exception, including the libraries linked with the

application, uses the MIPS16e instruction set and only that instruction set.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 10

The following examples show the few lines around line number 30 in the file Abassi_PIC32_MPLAB.s,

and they illustrate how to set-up the build for either a 32 bit application or a MIPS16e application:

Table 2-3 Build for 32 bit application

 .ifndef OS_USE_MIPS16E

 .equ OS_USE_MIPS16E, 0 # Set to 0 for 32 bit (MIPS32) application

 .endif # Set to != 0 for 16 bits MIPS16e application

Table 2-4 Build for 16 bit application

 .ifndef OS_USE_MIPS16E

 .equ OS_USE_MIPS16E, 1 # Set to 0 for 32 bit (MIPS32) application

 .endif # Set to != 0 for 16 bits MIPS16e application

Alternatively, it is possible to overload the OS_USE_MIPS16E value set in Abassi_PIC32_MPLAB.s by

using the assembler command line option –-defsym1 and specifying the desired instruction set. In the

following example, the MIPS16e instruction set is selected:

Table 2-5 Command line set of OS_USE_MIPS16E

pic32-as … --defsym=OS_USE_MIPS16E=1 …

Or using the compiler:

Table 2-6 Command line set of OS_USE_MIPS16E

pic32-gcc … -Wa,--defsym=OS_USE_MIPS16E=1 …

1
 The manual and error message of the assembler indicates the syntax being --defsym sym=value but in

reality, the syntax is --defsym=sym=value.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 11

The selection of the instruction set for Abassi_PIC32_MPLAB.s can also be controlled through the GUI,

in the “MPLAB PIC32 Assembler / Use Alternate Settings” menu, as shown in the following figure:

Figure 2-4 GUI set of OS_USE_MIPS16E

By examining the assembly code in the Abassi_PIC32_MPLAB.s file, it is obvious all of it has been

coded with the 32 bit instructions. The CPU can intermix both instruction types in the same application,

and as it is impossible to access the CP0 registers using the MIPS16e instruction set, it is necessary to

utilize the 32 bit instructions to handle the interrupts and to control the enabling/disabling of interrupts.

The build flag OS_USE_MIPS16E controls the set of registers that are preserved during a context switch and

in the interrupt dispatcher. The code, as distributed, sets the flag OS_USE_MIPS16E to 0, configuring the

build for 32 bit applications. When Abassi_PIC32_MPLAB.s is built for a 32 bit application, it can be

used with an application using either the 32 bit or MIPS16e instruction set; but when it is built for a

MIPS16e, it will only work for MIPS16e built applications; in this case, the presence of 32 bit instructions

in the applications will provoke an application crash.

The interrupt auto-clearing feature also needs to be set-up according to the needs of the application; see

Section 3.1.2.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 12

2.2 Interrupt Stack Set-up

It is possible, and is highly recommended, to use a hybrid stack when nested interrupts occur in an

application. Using this hybrid stack, specially dedicated to the interrupts, removes the need to allocate

extra room to the stack of every task in the application to handle the interrupt nesting. This feature is

controlled by the value set by the definition OS_ISR_STACK, located around line 30 in the file

Abassi_PIC32_MPLAB.s. To disable this feature, set the definition of OS_ISR_STACK to a value of zero.

To enable it, and specify the interrupt stack size, set the definition of OS_ISR_STACK to the desired size in

bytes (see Section 4 for information on stack sizing). As supplied in the distribution, the hybrid stack

feature is enabled, and a stack size of 128 bytes is allocated; this is shown in the following table:

Table 2-7 Interrupt Stack enabled

 .ifndef OS_ISR_STACK

 .equ OS_ISR_STACK, 1024 # If using a dedicated stack for the nested ISRs

 .endif # 0 if not used, otherwise size of stack in bytes

Table 2-8 Interrupt Stack disable

 .ifndef OS_ISR_STACK

 .equ OS_ISR_STACK, 0 # If using a dedicated stack for the nested ISRs

 .endif # 0 if not used, otherwise size of stack in bytes

Alternatively, it is possible to overload the OS_ISR_STACK value set in Abassi_PIC32_MPLAB.s by

using the assembler command line option –-defsym2 and specifying the desired hybrid stack setting. In

the following example, the hybrid stack is set to a size of 512:

Table 2-9 Command line set of OS_ISR_STACK

pic32-as … --defsym=OS_ISR_STACK=512 …

Or using the compiler:

Table 2-10 Command line set of OS_ISR_STACK

pic32-gcc … -Wa,--defsym=OS_ISR_STACK=512 …

2
 The manual and error message of the assembler indicates the syntax being –defsym sym=value but in

reality, the syntax is –defsym=sym=value.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 13

The sizing of the hybrid stack used by Abassi_PIC32_MPLAB.s can also be controlled through the GUI,

in the “MPLAB PIC32 Assembler / Use Alternate Settings” menu, as shown in the following figure:

Figure 2-5 GUI set of OS_ISR_STACK

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 14

3 Interrupts

The Abassi RTOS needs to be aware when kernel requests are performed inside or outside an interrupt

context. Normally, when coding with MPLAB, an interrupt function is specified with the “#pragma

interrupt …” directive. But for all interrupt sources, the Abassi RTOS provides an interrupt dispatcher,

which allows it to be interrupt-aware. This dispatcher achieves two goals. First, the kernel uses it to know

if a request to it occurs within an interrupt context or not. Second, using this dispatcher reduces the code

size as all interrupts share the same code for the decision making of entering the kernel or not at the end of

the interrupts.

Out of the box there are provisions for 64 sources of interrupts, as specified by the build option

OS_N_INTERRUPTS, defined in the file Abassi.h
3
. This build option is not part of the generic RTOS

build options as it is processor-specific, therefore its value is set according to the specific compiler and

processor port. PIC32 family devices have the capability to support 96 sources of interrupts that are

remapped to the 64 interrupt vectors.

The PIC32 interrupt controller can operate either in multi-vector mode or in single-vector mode. The

Abassi RTOS interrupt dispatcher requires the interrupt controller to operate in single-vector mode and that

the general register set, NOT the shadow register set, is used during interrupts. All this set-up is done

inside the RTOS by the initialization function OSstart(). Nothing extra about the interrupts should be set

by the application; everything interrupt related must use the RTOS interrupt installer. The only other set-up

an application needs to do for the ISR is to set the priority of the interrupt and enable the interrupt on the

peripheral, and if the auto-clearing feature (Section 3.1.2) does not apply to the interrupt vector number or

if it is disabled, to clear the interrupt request in the interrupt function. Obviously, configuring the

peripheral is also needed.

3.1 Interrupt Handling

3.1.1 Interrupt Installer

Attaching a function to an interrupt is quite straightforward. All there is to do is use the component

OSisrInstall() to specify the interrupt vector number and the function to be attached to that interrupt

vector number:

Table 3-1 Attaching a Function to an Interrupt

#include “Abassi.h”

 …

 OSstart();

 …

 OSisrInstall(Number, &ISRfct);

 Set-up the interrupt source

 Enable the interrupt source

 … /* More ISR setup */

 OSeint(); /* Global enable of all interrupts */

The function to attach to the interrupt, ISRfct() in the above example, is and must always be a regular

function.

NOTE: It is a regular function, not one declared with the MPLAB specific “#pragma interrupt” prefix

statement.

3
 The build option OS_N_INTERRUPTS for this port should never be modified.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 15

At start-up, once OSstart() has been called, all OS_N_INTERRUPTS interrupt handler functions are set to

a “do nothing” function, named OSinvalidISR(). If an interrupt function is attached to an interrupt

vector using the OSisrInstall() component before calling OSstart(), this attachment will be removed

by OSstart(), so OSisrInstall() should never be used before OSstart() has ran. When an interrupt

handler is removed, it is very important and necessary to first disable the interrupt source, then the handling

function can be set back to OSinvalidISR(). This is shown in the next table:

Table 3-2 Invalidating an ISR handler

#include “Abassi.h”

 …

 Disable the interrupt source

 OSisrInstall(Number, &OSinvalidISR);

 …

One must remember the component OSisrInstall()uses the interrupt vector number, NOT the interrupt

request number. On the PIC32, multiple interrupt request numbers can be mapped to a single interrupt

vector. When this happens, the interrupt function must determine what interrupt request number has

triggered the interrupt. The data sheet of each device provides a mapping table for the interrupt request

numbers and the interrupt vector numbers in the section “Interrupt Controller”. Alternatively, one can use

the MPLAB development suite definitions for the interrupt vector number and these include files are

located in the device specific definition file, named similar to the part number. For example, for a

PIC32MX360F512L and PICMX795F512L devices, the definition file names are p32mx360f512l.h and

p32mx795f512l.h respectively. These include files are in the “...\MPLAB C32

Suite\pic32mx\include\proc” folder of the MPLAB IDE install location.

3.1.2 Interrupt Request Auto-Clearing

Examining the pairing of the interrupt request numbers and the interrupt vector numbers in the datasheets

table, it is obvious that the pairing is a perfect match up to some interrupt request number. After that

cutoff, either an interrupt vector number becomes paired to multiple interrupt request numbers, or single

pairings do not have the same values anymore. The following table lists the lowest cutoff value of the

interrupt vector number when the pairing does not match anymore for the device family (at the time of

writing this document):

Table 3-3 Interrupt Pairing Cutoff Values

Device Family Cut-Off

PIC32MX1XX 5

PIC32MX2XX 5

PIC32MX3XX 23

PIC32MX4XX 23

PIC32MX5XX 23

PIC32MX6XX 23

PIC32MX7XX 23

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 16

It is always necessary to clear the interrupt request by clearing the associated bit in the IFS0 or IFS1

register of the interrupt controller; the bit position and register is a function of the interrupt request number.

To simplify the implementation of applications using the RTOS, the ISR dispatcher can deal with clearing

the request bit by itself, but unfortunately, all the ISR dispatcher can be made aware of is the interrupt

vector number. As previously indicated, there is a one to one mapping between the interrupt request

number and the interrupt vector number up to a cutoff value. In the file Abassi_PIC32_MPLAB.s, at

around line number 40, there is a definition that controls if the auto-clearing of interrupt requests is

performed by the ISR dispatcher, and what is the interrupt vector number when the ISR dispatcher must

stop performing the auto-clearing:

Table 3-4 ISR Auto-clearing Control

 .ifndef OS_ISR_CLR_CUTOFF

 .equ OS_ISR_CLR_CUTOFF, 23 # IRQ vector value at which the ISR dispatcher stops

 .endif # auto-clearing the ISR. Set to 0 to disable

In the above table the definition is set to 23, which is the cutoff value for the 3XX, 4XX, 5XX, 6XX and

7XX device families, and this is the value set in the distribution code.

To completely disable the auto-clearing feature, set the definition to a value of zero as shown below:

Table 3-5 ISR Auto-clearing Disabling

 .ifndef OS_ISR_CLR_CUTOFF

 .equ OS_ISR_CLR_CUTOFF, 0 # IRQ vector value at which the ISR dispatcher stops

 .endif # auto-clearing the ISR. Set to 0 to disable

Alternatively, it is possible to overload the value of OS_ISR_CLR_CUTOFF set in

Abassi_PIC32_MPLAB.s by using the assembler command line option –-defsym4 and specifying the

desired hybrid stack setting. In the following example, the cutoff value set to 12:

Table 3-6 Command line set of ISR Auto-clearing

pic32-as … --defsym=OS_ISR_CLR_CUTOFF=12 …

Or using the compiler

Table 3-7 Command line set of ISR Auto-clearing

pic32-gcc … -Wa,--defsym=OS_ISR_CLR_CUTOFF=12 …

4
 The manual and error message of the assembler indicates the syntax being –defsym sym=value but in

reality, the syntax is –defsym=sym=value.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 17

The selection of the ISR auto-clearing cutoff can also be controlled through the GUI, in the “MPLAB

PIC32 Assembler / Use Alternate Settings” menu, as shown in the following figure:

Figure 3-1 GUI set of ISR Auto-clearing

NOTE: Never set the value of ISR_CLR_CUTOFF to a value greater than the lowest interrupt vector

number where the perfect pairing stops existing.

Here are two examples to show the advantage of the auto-clearing feature. The first example is the code

implementing the ISR function for timer #1 with the auto-clearing enabled (or set to a value greater than 4).

The timer #1 interrupt vector number is 4 (same as the interrupt request number):

Table 3-8 ISR function with auto-clearing

void TimerISR_Auto(void)

{

 g_Count++; /* Increment the global count variable */

 return;

}

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 18

The next code example is with the auto-clearing feature disabled (or with a value set to 4 or less):

Table 3-9 ISR function without auto-clearing

void TimerISR_Auto(void)

{

 mT1ClearIntFlag(); /* Clear the interrupt request */

 g_Count++; /* Increment the global count variable */

 return;

}

One obvious advantage of the auto-clearing feature is that this timer interrupt function can be detached

from one timer and attached to another one without modifying the code (as long as both interrupt vector

number are below the cutoff value specified in the ISR_CLR_CUTOFF definition). In the case of the

function without the auto-clearing, the “mT1ClearIntFlag();” must be modified when it is attached to a

timer different than timer #1. For example, if this interrupt function is attached to timer #3, the statement

must then be “mT3ClearIntFlag();”

3.2 Regular Interrupts

Regular interrupts are interrupts that can use all RTOS component. The PIC32 port of the RTOS only uses

regular interrupts, so there is no ambiguity when using interrupts on a PIC32 device.

3.3 Fast Interrupts

Fast interrupts are not supported on the PIC32 port of the RTOS.

3.4 Nested Interrupts

The PIC32 interrupt controller allows nesting of interrupts; this means an interrupt of higher priority will

interrupt the processing of an interrupt of lower priority. Individual interrupt sources (interrupt request

numbers) can be set to one of 8 levels, where level 0 is the lowest (interrupts set to the priority level 0 are

disabled) and 7 is the highest. This implies that the RTOS build option OS_NESTED_INTS must be set to a

non-zero value. The exception to this is if all enabled interrupts in an application are all set, without

exception, to the same priority; then interrupt nesting will not occur. In that case, and only that case, can

the build option OS_NESTED_INTS be set to zero. As this latter case is quite unlikely, the build option

OS_NESTED_INTS is always overloaded when compiling the RTOS for the PIC32. If the latter condition is

guaranteed, the overloading located after the pre-processor directive can be modified. The code affected in

Abassi.h is shown in Table 3-10 below and the line to modify is the one with #define

OX_NESTED_INTS 1:

Table 3-10 Removing interrupt nesting

#elif defined(__GNUCC__) && defined(__PIC32MX_)

 …

 #define OX_NESTED_INTS 0 /* The PIC32 has 8 interrupt levels */

Or if the build option OS_NESTED_INTS is desired to be propagated:

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 19

Table 3-11 Propagating interrupt nesting

#elif defined(__GNUCC__) && defined(__PIC32MX_)

 …

 #define OX_NESTED_INTS OS_NESTED_INTS

The Abassi RTOS kernel never disables interrupts, but there are a few very small regions within the

interrupt dispatcher where interrupts are temporarily disabled when nesting is enabled (a total of between

10 to 20 instructions).

The kernel is never entered as long as interrupt nesting is occurring. In all interrupt functions, when a

RTOS component that needs to access some kernel functionality is used, the request(s) is/are put in a

queue. Only once the interrupt nesting is over (i.e. when only a single interrupt context remains) is the

kernel entered at the end of the interrupt, when the queue contains one or more requests, and when the

kernel is not already active. This means that only the interrupt handler function operates in an interrupt

context, and only the time the interrupt function is using the CPU are other interrupts of equal or lower

level blocked by the interrupt controller.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 20

4 Stack Usage

The RTOS uses the tasks’ stack for two purposes. When a task is blocked or ready to run but not running,

the stack holds the register context that was preserved when the task got blocked or preempted. Also, when

an interrupt occurs, the register context of the running task must be preserved in order for the operations

performed during the interrupt to not corrupt the contents of the registers used by the task when it got

interrupted. For the PIC32, the context save contents of a blocked or pre-empted task is different from the

one used in an interrupt. The following table lists the number of bytes required by each type of context

save operation:

Table 4-1 Context Save Stack requirements

Description Context save

Blocked/Preempted task context save (MIPS32) 64 bytes

Blocked/Preempted task context save (MIPS16e) 16 bytes

Interrupt context save (MIPS32) 112 bytes

Interrupt context save (MIPS16e) 68 bytes

When sizing the stack to allocate to a task, there are three factors to take in account. The first factor is

simply that every task in the application needs at least the area to preserve the task context when it is

preempted or blocked. Second, one must take into account how many levels of nested interrupts exist in

the application. As a worst case, all levels of interrupts may occur and becoming fully nested. So, if N

levels of interrupts are used in the application, provision should be made to hold N times the size of an ISR

context save on each task stack, plus any added stack used by the interrupt handler functions. Finally, add

to all this the stack required by the code implementing the task operation.

NOTE: The MIPS32 processor needs alignment on 8 words for some instructions accessing memory.

When stack memory is allocated, Abassi guarantees the alignment. This said, when sizing

OS_STATIC_STACK or OS_ALLOC_SIZE, make sure to take in account that all allocation

performed through these memory pools are by block size multiple of 8 bytes.

If the hybrid interrupt stack (see Section 2.2) is enabled, then the above description changes: it is only

necessary to reserve room on task stacks for a single interrupt context save and not the worst-case nesting.

With the hybrid stack enabled, the second, third, and so on interrupts use the stack dedicated to the

interrupts. The hybrid stack is enabled when the OS_ISR_STACK token in file Abassi_PIC32_MPLAB.s

is set to a non-zero value (Section 2.2).

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 21

5 Search Set-up

The Abassi RTOS build option OS_SEARCH_FAST offers three different algorithms to quickly determine

the next running task upon task blocking. The following table shows the measurements obtained for the

number of CPU cycles required when a task at priority 0 is blocked, and the next running task is at the

specified priority. The number of cycles includes everything, not just the search cycle count. The number

of cycles was measured using the timer #4-5 pair set to use the system clock with a pre-scale of 1; this

means the timer pair counter increments once every CPU cycle. The second column is when

OS_SEARCH_FAST is set to zero, meaning a simple array traversing. The third column, named Look-up, is

when OS_SEARCH_FAST is set to 1, which uses an 8 bit look-up table. Finally, the last column is when

OS_SEARCH_FAST is set to 5 (MPLAB/PIC32 int are 32 bits, so 2^5), meaning a 32 bit look-up table,

further searched through successive approximation. The compiler optimization for this measurement was

set to Level 3 (–O3) with 32 bit instructions. The build options were set to the minimum feature set except

for the option OS_PRIO_CHANGE set to non-zero. The presence of this extra feature provokes a small

mismatch between the result for a difference of priority of 1 with OS_SEARCH_FAST set to zero and the

latency results in Section 7.2.

When the build option OS_SEARCH_ALGO is set to a negative value, indicating to use a 2-dimentsion linked

list search technique instead of the search array, the number of CPU is constant at 213 cycles.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 22

Table 5-1 Search Algorithm Cycle Count

Priority Linear search Look-up Approximation

1 210 253 288

2 220 256 288

3 224 260 290

4 228 264 288

5 232 268 290

6 236 272 290

7 240 276 292

8 244 250 288

9 248 264 290

10 252 267 290

11 256 271 292

12 260 275 290

13 264 279 292

14 268 283 292

15 272 287 294

16 276 257 286

17 280 271 288

18 284 274 288

19 288 278 290

20 292 282 288

21 296 286 290

22 300 290 290

23 304 294 292

24 308 264 288

When OS_SEARCH_FAST is set to 0, each extra priority level to traverse requires exactly 4 CPU cycles.

When OS_SEARCH_FAST is set to 1, each extra priority level to traverse requires exactly 4 CPU cycles,

except when the priority level is an exact multiple of 8; then there is a sharp reduction of CPU usage.

Overall, setting OS_SEARCH_FAST to 1 adds around 36 cycles of CPU for the search compared to setting

OS_SEARCH_FAST to zero. But when the next ready to run priority is less than 8, 16, 24, … then there is an

extra 11 cycles needed but without the 8 times 7 cycle accumulation. Finally, the third option, when

OS_SEARCH_FAST is set to 5, delivers a quasi-constant CPU usage as the algorithm utilizes a successive

approximation search technique.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 23

The first observation, when looking at this table, is that the third option, when OS_SEARCH_FAST is set to

5, is always less CPU efficient than the second option, the one when OS_SEARCH_FAST is set to 1. So the

build option OS_SEARCH_FAST should never be set to 5, as it is the least efficient method. The other

observation is that the first option (OS_SEARCH_FAST set to 0) delivers better CPU performance than the

second option (OS_SEARCH_FAST set to 1) when the search spans less than around 10 priority levels. So if

an application has tasks spanning less than around 10 priority levels, the build option OS_SEARCH_FAST

should be set to 0; for all other cases, the build option OS_SEARCH_FAST should be set to 1.

Setting the build option OS_SEARCH_ALGO to a non-negative value minimizes the time needed to change

the state of a task from blocked to ready to run and not the time needed to find the next running task upon

blocking / suspending of the running task. If the application needs are such that the critical real-time

requirement is to get the next running task up and running as fast as possible, then set the build option

OS_SEARCH_ALGO to a negative value.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 24

6 Chip Support

No chip support is provided with the distribution code because the MPLAB development suite offers an

extensive peripheral library that supports everything needed to use the PIC32 peripherals.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 25

7 Measurements

This section gives an overview of the memory requirements and the CPU latency encountered when the

RTOS is used on the PIC32 and compiled with MPLAB/GCC. The CPU cycles are exactly the CPU clock

cycles, as the processor executes one instruction at every clock transition.

7.1 Memory

The memory numbers are supplied for the two limit cases of build options (and some in-between): the

smallest footprint is the RTOS built with only the minimal feature set, and the other with almost all the

features. For both cases, names are not part of the build. This feature was removed from the metrics

because it is highly probable that shipping products utilizing this RTOS will not include the naming of

descriptors, as its usefulness is mainly limited to debugging and making the opening/creation of

components run-time safe.

The code size numbers are expressed with “less than” as they have been rounded up to multiples of 25 for

the “C” code. These numbers were obtained using the beta release of the RTOS and may change. One

should interpret these numbers as the “very likely” numbers for the released version of the RTOS. The

memory usage is shown for both types of instructions: the native 32 bit MIPS32 instruction set and the 16

bit (MIPS16e) instruction set (the 16 bit instructions are generated by the compiler by specifying the option

-mips16).

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 26

The memory required by the RTOS code includes the “C” code and assembly language code used by the

RTOS. The code optimization settings of the compiler that were used for the memory measurements are:

1. Generate Debugging Information: Disable
5

2. Optimization Level: -Os (Smallest code size)

3. Unroll Loops: Disabled

4. Omit Frame Pointer: Disabled

5. Pre-Optimization Inst Scheduling: (Default for Optimization Level)

6. Post-Optimization Inst Scheduling: (Default for Optimization Level)

Figure 7-1 Memory Measurement Code Optimization Settings

5
 The debugging option was turned off as the debugging sometimes restricts the optimizer.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 27

Table 7-1 “C” Code Memory Usage

Description MIPS32 MIPS16e

Minimal Build < 1200 bytes < 825 bytes

+ Runtime service creation / static memory < 1625 bytes < 1050 bytes

+ Multiple tasks at same priority < 1725 bytes < 1150 bytes

+ Runtime priority change

+ Mutex priority inheritance

+ FCFS

+ Task suspension

< 2350 bytes < 1725 bytes

+ Timer & timeout

+ Timer call back

+ Round robin

< 3150 bytes < 2100 bytes

+ Events

+ Mailbox

< 4225 bytes < 3000 bytes

Full Feature Build (no names) < 5075 bytes < 3550 bytes

Full Feature Build (no name / no run time creation) < 4425 bytes < 3175 bytes

Full Feature Build (no names / no runtime creation)

+ Timer services module

< 5075 bytes < 3400 bytes

Table 7-2 Assembly Code Memory Usage

Description Auto-Clear ISR Stack

Build for a MIPS32 application 580 bytes + 36 bytes + 32 bytes

Build for a MIPS16e application 440 bytes + 36 bytes + 32 bytes

There are two aspects when describing the data memory usage by the RTOS. First, the RTOS needs its

own data memory to operate, and second, most of the services offered by the RTOS require data memory

for each instance of the service. As the build options affect either the kernel memory needs or the service

descriptors (or both), an interactive calculator has been made available on Code Time Technologies web

site.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 28

7.2 Latency

Latency of operations has been measured on an Olimex PIC32-WEB development board populated with an

80 MHz PIC32MX460F512L and also on a Microchip PIC32 Starter Kit populated with an 80 MHz

PIC32MX360F512L. The code optimization settings that were used for the latency measurements are:

1. Generate Debugging Information: Disable
6

2. Optimization Level: -O3 (Fastest code)

3. Unroll Loops: Disabled

4. Omit Frame Pointer: Disabled

5. Pre-Optimization Inst Scheduling: (Default for Optimization Level)

6. Pots-Optimization Inst Scheduling: (Default for Optimization Level)

Figure 7-2 Latency Measurement Code Optimization Settings

The processor is configured for maximum performance (cache & wait state settings) using the peripheral

library module SYSTEMConfigPerformance().

There are 5 types of latencies that are measured, and these 5 measurements are expected to give a very

good overview of the real-time performance of the Abassi RTOS for this port. For all measurements, three

tasks were involved:

1. Adam & Eve set to a priority value of 0;

2. A low priority task set to a priority value of 1;

3. The Idle task set to a priority value of 20.

6
 The debugging option was turned off as the debugging sometimes restricts the optimizer.

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 29

The sets of 5 measurements are performed on a semaphore, on the event flags of a task and finally on a

mailbox. The first 2 latency measurements use the component in a manner where there is no task

switching. The third measurements involve a high priority task getting blocked by the component. The

fourth measurements are about the opposite: a low priority task getting pre-empted because the component

unblocks a high priority task. Finally, the reaction to unblocking a task, which becomes the running task,

through an interrupt is provided.

The first set of measurements counts the number of CPU cycles elapsed starting right before the component

is used until it is back from the component. For these measurement, there is no task switching. This means:

Table 7-3 Measurement without Task Switch

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput();

 Stop CPU cycle count

The second set of measurements, as for the first set, counts the number of CPU cycles elapsed starting right

before the component is used until it is back from the component. For these measurement, there is no task

switching. This means:

Table 7-4 Measurement without Blocking

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

The third set of measurements counts the number of CPU cycles elapsed starting right before the

component triggers the unblocking of a higher priority task until the latter is back from the component used

that blocked the task. This means:

Table 7-5 Measurement with Task Switch

 main()

 {

 …

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 Stop CPU cycle count

 …

 }

 TaskPrio1()

 {

 …

 Start CPU cycle count

 SEMpost(…); or EVTset(…); or MBXput(…);

 …

 }

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 30

The forth set of measurements counts the number of CPU cycles elapsed starting right before the

component blocks of a high priority task until the next ready to run task is back from the component it was

blocked on; the blocking was provoked by the unblocking of a higher priority task. This means:

Table 7-6 Measurement with Task unblocking

 main()

 {

 …

 Start CPU cycle count

 SEMwait(…, -1); or EVTwait(…, -1); or MBXget(…, -1);

 …

 }

 TaskPrio1()

 {

 …

 SEMpost(…); or EVTset(…); or MBXput(…);

 Stop CPU cycle count

 …

 }

The fifth set of measurements counts the number of CPU cycles elapsed from the beginning of an interrupt

using the component, until the task that was blocked becomes the running task and is back from the

component used that blocked the task. The interrupt latency measurement includes everything involved in

the interrupt operation, even the cycles the processor needs to push the interrupt context before entering the

interrupt code. The interrupt function, attached with OSisrIinstall(), is simply a two line function

that uses the appropriate RTOS component followed by a return.

The following two tables list the results obtained, where the cycle count is measured using the timer pair

#4-5 with no pre-scaling and with the oscillator post-scaling for the peripheral clock set to 1. This means

the timer pair #4-5 counter increments by one at every processor clock transition. As for the memory

measurements, these numbers were obtained with a beta release of the RTOS. It is possible the released

version of the RTOS may have slightly different numbers.

The interrupt latency is the number of cycles elapsed when the interrupt trigger occurred and the ISR

function handler is entered. This includes the number of cycles used by the processor to set-up the interrupt

stack and branch to the address specified in the interrupt vector table. But for this measurement, the timer

pair #2-3 is used to trigger the interrupt and measure the elapsed time. The latency measurement includes

the cycles required to acknowledge the interrupt.

The interrupt overhead without entering the kernel is the measurement of the number of CPU cycles used

between the entry point in the interrupt vector and the return from interrupt, with a “do nothing” function in

the OSisrInstall(). The interrupt trigger was the timer pair #2-3. The interrupt auto-clearing feature is

enabled for the ISR tests but the interrupt stack is disabled. The interrupt overhead when entering the kernel

is calculated using the results from the third and fifth tests. Finally, the OS context switch is the

measurement of the number of CPU cycles it takes to perform a task switch, without involving the wrap-

around code of the synchronization component

In the following table, the latency numbers between parentheses are the measurements when the build

option OS_SEARCH_ALGO is set to a negative value. The regular number is the latency measurements when

the build option OS_SEARCH_ALGO is set to 0.

Table 7-7 Latency Measurements for 32 bits instructions

Description Minimal Features Full Features

Semaphore posting no task switch 117 (112) 154 (159)

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 31

Semaphore waiting no blocking 121 (119) 167 (168)

Semaphore posting with task switch 183 (200) 277 (306)

Semaphore waiting with blocking 195 (190) 317 (307)

Semaphore posting in ISR with task switch 384 (412) 486 (514)

Event setting no task switch n/a 131 (143)

Event getting no blocking n/a 171 (172)

Event setting with task switch n/a 280 (312)

Event getting with blocking n/a 330 (324)

Event setting in ISR with task switch n/a 493 (522)

Mailbox writing no task switch n/a 198 (202)

Mailbox reading no blocking n/a 215 (217)

Mailbox writing with task switch n/a 315 (344)

Mailbox reading with blocking n/a 377 (368)

Mailbox writing in ISR with task switch n/a 530 (557)

Interrupt Latency 74 74

Interrupt overhead entering the kernel
7
 201 (212) 209 (208)

Interrupt overhead not entering the kernel 137 137

Context switch 44 44

7
 Due to the cache, this number varies +/- 5 cycles

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 32

Table 7-8 Latency Measurements for MIPS16e Instructions

Description Minimal Features Full Features

Semaphore posting no task switch 145 (154) 248 (256)

Semaphore waiting no blocking 154 (163) 277 (287)

Semaphore posting with task switch 225 (254) 429 (465)

Semaphore waiting with blocking 259 (257) 490 (482)

Semaphore posting in ISR with task switch 460 (495) 684 (716)

Event setting no task switch n/a 248 (260)

Event getting no blocking n/a 278 (288)

Event setting with task switch n/a 465 (505)

Event getting with blocking n/a 511 (503)

Event setting in ISR with task switch n/a 713 (751)

Mailbox writing no task switch n/a 321 (328)

Mailbox reading no blocking n/a 337 (347)

Mailbox writing with task switch n/a 482 (520)

Mailbox reading with blocking n/a 566 (556)

Mailbox writing in ISR with task switch n/a 745 (779)

Interrupt Latency 63 63

Interrupt overhead entering the kernel8 235 (241) 255 (251)

Interrupt overhead not entering the kernel 115 115

Context switch 29 29

8
 Due to the cache, this number varies +/- 4 cycles

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 33

8 Appendix A: Build Options for Code Size

8.1 Case 0: Minimum build

Table 8-1: Case 0 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 34

8.2 Case 1: + Runtime service creation / static memory

Table 8-2: Case 1 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 2 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 2 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 0 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 35

8.3 Case 2: + Multiple tasks at same priority

Table 8-3: Case 2 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 0 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 0 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 0 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 0 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 36

8.4 Case 3: + Priority change / Priority inheritance / FCFS / Task suspend

Table 8-4: Case 3 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 0 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 0 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 0 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 0 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 37

8.5 Case 4: + Timer & timeout / Timer call back / Round robin

Table 8-5: Case 4 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 38

8.6 Case 5: + Events / Mailboxes

Table 8-6: Case 5 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 0 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 0 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN 100000/* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO 0 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX 0 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX 0 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 0 /* If tasks have arguments */

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 39

8.7 Case 6: Full feature Build (no names)

Table 8-7: Case 6 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 1 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 40

8.8 Case 7: Full feature Build (no names / no runtime creation)

Table 8-8: Case 7 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 0 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 0 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 0 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 0 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 0 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 0 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

Abassi RTOS Port – PIC32 – MPLAB/GCC Suite 2012.04.18

Rev 1.11 Page 41

8.9 Case 8: Full build adding the optional timer services

Table 8-9: Case 8 build options

#define OS_ALLOC_SIZE 0 /* When !=0, RTOS supplied OSalloc */

#define OS_COOPERATIVE 0 /* When 0: pre-emptive, when non-zero: cooperative */

#define OS_EVENTS 1 /* If event flags are supported */

#define OS_FCFS 1 /* Allow the use of 1st come 1st serve semaphore */

#define OS_IDLE_STACK 0 /* If IdleTask supplied & if so, stack size */

#define OS_LOGGING_TYPE 0 /* Type of logging to use */

#define OS_MAILBOX 1 /* If mailboxes are used */

#define OS_MAX_PEND_RQST 32 /* Maximum number of requests in ISRs */

#define OS_MTX_DEADLOCK 0 /* This test validates this */

#define OS_MTX_INVERSION 1 /* To enable protection against priority inversion */

#define OS_NAMES 0 /* != 0 when named Tasks / Semaphores / Mailboxes */

#define OS_NESTED_INTS 0 /* If operating with nested interrupts */

#define OS_PRIO_CHANGE 1 /* If a task priority can be changed at run time */

#define OS_PRIO_MIN 20 /* Max priority, Idle = OS_PRIO_MIN, AdameEve = 0 */

#define OS_PRIO_SAME 1 /* Support multiple tasks with the same priority */

#define OS_ROUND_ROBIN -100000 /* Use round-robin, value specifies period in uS */

#define OS_RUNTIME 0 /* If create Task / Semaphore / Mailbox at run time */

#define OS_SEARCH_ALGO 0 /* If using a fast search */

#define OS_STARVE_PRIO -3 /* Priority threshold for starving protection */

#define OS_STARVE_RUN_MAX -10 /* Maximum Timer Tick for starving protection */

#define OS_STARVE_WAIT_MAX -100 /* Maximum time on hold for starving protection */

#define OS_STATIC_BUF_MBX 100 /* when OS_STATIC_MBOX != 0, # of buffer element */

#define OS_STATIC_MBX 2 /* If !=0 how many mailboxes */

#define OS_STATIC_NAME 0 /* If named mailboxes/semaphore/task, size in char */

#define OS_STATIC_SEM 5 /* If !=0 how many semaphores and mutexes */

#define OS_STATIC_STACK 128 /* if !=0 number of bytes for all stacks */

#define OS_STATIC_TASK 5 /* If !=0 how many tasks (excluding A&E and Idle) */

#define OS_TASK_SUSPEND 1 /* If a task can suspend another one */

#define OS_TIMEOUT 1 /* !=0 enables blocking timeout */

#define OS_TIMER_CB 10 /* !=0 gives the timer callback period */

#define OS_TIMER_SRV 1 /* !=0 includes the timer services module */

#define OS_TIMER_US 50000 /* !=0 enables timer & specifies the period in uS */

#define OS_USE_TASK_ARG 1 /* If tasks have arguments */

