
Copyright Information
This document is copyright Code Time Technologies Inc. ©2013-2015. All rights reserved. No part of this document may be
reproduced or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of
Code Time Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

mAbassi RTOS
BSP Document

ARMv7 Caches (GCC)

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Sourcery CodeBench is a registered trademark of Mentor Graphics. All
other trademarks are the property of their respective owners.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 LIMITATIONS .. 6
1.3 FEATURES ... 6

2 TARGET SET-UP .. 7
2.1 BUILD OPTIONS & TABLES ... 7
2.2 BUILD OPTIONS .. 8

2.2.1 Number of cores .. 8
2.2.2 Thumb2 ... 9
2.2.3 Target Device .. 10
2.2.4 L1 Page Table(s) / L1 disabling ... 10
2.2.5 MMU Definition Tables .. 11
2.2.6 Unused Pages .. 13
2.2.7 L1 Cache Branch Prediction .. 13
2.2.8 L1 / L2 Cache Pre-fetch .. 14
2.2.9 Full line of write zero .. 15
2.2.10 L2C-310 Registers Base Address .. 15
2.2.11 Non-shared memory .. 16
2.2.12 Non-cache attribute .. 17
2.2.13 ARM Cache Errata ... 17

2.3 TABLES ... 18
2.3.1 Shared Memory ... 19
2.3.2 Peripheral Addresses .. 19
2.3.3 Private Memory .. 20

3 IMPLEMENTATION .. 22
4 API .. 23

4.1 CORECACHEON .. 24
4.2 DCACHEFLUSHRANGE ... 25
4.3 DCACHEINVALRANGE ... 26
4.4 MMULOG2PHY .. 27
4.5 MMUPHY2LOG .. 28

5 REFERENCES .. 29
6 REVISION HISTORY ... 30

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 4

List of Figures

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 BUILD OPTIONS ... 7
TABLE 2-2 ENABLING / DISABLING COMBINATIONS ... 7
TABLE 2-3 OS_N_CORE MODIFICATION ... 8
TABLE 2-4 COMMAND LINE SET OF OS_N_CORE (ASM) ... 8
TABLE 2-5 COMMAND LINE SET OF OS_N_CORE (C) ... 8
TABLE 2-6 OS_ASM_THUMB MODIFICATION ... 9
TABLE 2-7 COMMAND LINE SET OF OS_ASM_THUMB (ASM) .. 9
TABLE 2-8 OS_PLATFORM VALID SETTINGS .. 10
TABLE 2-9 OS_PLATFORM MODIFICATION .. 10
TABLE 2-10 COMMAND LINE SET OF OS_PLATFORM ... 10
TABLE 2-11 OS_SAME_L1_PAGE_TBL SETTING ... 11
TABLE 2-12 USING A SINGLE L1 PAGE TABLE .. 11
TABLE 2-13 DISABLING THE L1 CACHE / MMU / SCU ... 11
TABLE 2-14 COMMAND LINE SET OF OS_SAME_L1_PAGE_TBL .. 11
TABLE 2-15 OS_MMU_EXTERN_DEF SYNBOLS .. 12
TABLE 2-16 EXAMPLE PERIPHERAL DEFINITION TABLE .. 12
TABLE 2-17 OS_MMU_EXTERN_DEF SETTING .. 12
TABLE 2-18 OS_MMU_EXTERN_DEF FOR INVALID SETTING .. 12
TABLE 2-19 COMMAND LINE SET OF OS_MMU_EXTERN_DEF ... 12
TABLE 2-20 OS_MMU_ALL_INVALID SETTING ... 13
TABLE 2-21 OS_MMU_ALL_INVALID FOR INVALID SETTING .. 13
TABLE 2-22 COMMAND LINE SET OF OS_MMU_ALL_INVALID .. 13
TABLE 2-23 OS_L1_CACHE_BP SETTING ... 13
TABLE 2-24 ENABLING BRANCH PREDICTION ... 14
TABLE 2-25 COMMAND LINE SET OF OS_L1_CACHE_BP .. 14
TABLE 2-26 OS_L1_CACHE_PF SETTING ... 14
TABLE 2-27 ENABLING DATA PRE-FETCH ... 14
TABLE 2-28 COMMAND LINE SET OF OS_L1_CACHE_PF .. 14
TABLE 2-29 OS_CACHE_WRITE_ZERO SETTING .. 15
TABLE 2-30 ENABLING FULL LINE WRITE OF ZERO ... 15
TABLE 2-31 COMMAND LINE SET OF OS_CACHE_WRITE_ZERO .. 15
TABLE 2-32 L2 CACHE DEFAULT BASE ADDRESS .. 16
TABLE 2-33 COMMAND LINE SET OF OS_L2_BASE_ADDR .. 16
TABLE 2-34 L2 BASE ADDRESSES ... 16
TABLE 2-35 OS_USE_NON_SHARED SETTING .. 16
TABLE 2-36 COMMAND LINE SET OF OS_USE_NON_SHARED ... 17
TABLE 2-37 CACHE ERRATA HANDLE BY ARMV7_SMP_L1_L2_GCC.S ... 18
TABLE 2-38 CACHE ERRATA TO BE HANDLE BY THE APPLICATION ... 18
TABLE 2-39 EXAMPLE SHARED MEMORY DEFINITION TABLE ... 19
TABLE 2-40 EXAMPLE PERIPHERAL DEFINITION TABLE .. 19
TABLE 2-41 EXAMPLE PRIVATE MEMORY DEFINITION TABLE .. 20

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 6

1 Introduction
This document details the L1 and L2 caches, memory management unit (MMU), and snoop control unit
(SCU) support BSP module for the multi-core mAbassi RTOS. This module is targeted to the ARM
Cortex-A9 multi-core processor, commonly known as the Arm9 MPcore, using GCC. The GCC tool chain
used for test and validation is the Mentor Graphics Sourcery CodeBench Lite version 2012.3-56.

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

ARMv7_SMP_L1_L2_GCC.s Cache configuration and enabling code

1.2 Limitations
The file ARMv7_SMP_L1_L2_GCC.s, described here, can only be use with the multi-core RTOS mAbassi.
For the single core Abassi, the file ARMv7_L1_L2_GCC.s must be used [R3].

1.3 Features
This cache BSP module handles the configuration and enabling of the MPcore L1 instruction and data
caches, the memory management unit (MMU), the snoop control unit (SCU), and the ARM CoreLink
Level 2 Cache Controller L2C-310.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 7

2 Target Set-up
All there is to do to configure and enable the ARMv7 caches is to include in the build the file
ARMv7_SMP_L1_L2_GC.s and to make sure the port-specific assembly file build option OS_USE_CACHE is
set to a non-zero value (refer to the mAbassi port document for GCC [R1]).

2.1 Build Options & Tables
The file ARMv7_SMP_L1_L2_GCC.s relies on a few build options for its configuration and some definition
tables for setting up of the L1 caches and MMU. The build options are listed in the following table:

Table 2-1 Build options

Build Option Description

OS_N_CORE Number of cores the application uses

OS_ASM_THUMB Use Thumb2 or 32 bit instructions

OS_PLATFORM Specifies the target platform

OS_SAME_L1_PAGE_TBL Select if a single L1 MMU page table is used or if each core has its
own MMU table

OS_MMU_ALL_INVALID Select if the MMU sets the unused L1 pages as invalid or shared

OS_MMU_EXTERN_DEF Select if the MMU definition tables are imported or local

OS_L1_CACHE_BP Enable/disable the L1 cache branch prediction option

OS_L1_CACHE_PF Enable/disable the L1 cache data pre-fetch option

OS_L2_CACHE_PF Enable/disable the L2 cache data pre-fetch option

OS_CACHE_WRITE_ZERO Enable/disable the full line of zero write line option

OS_USE_NON_SHARED Select if the cores have access to exclusive (private) memory areas

OS_L2_BASE_ADDR Base address of the L2C-310 L2 cache registers / disable of the L2
cache

OS_NC_STRONG_ORDER Select if non-cache memory has the “device” or “strongly ordered”
property

As a quick reference, the following table lists the combinations of values for the two build options that
control the enabling or disabling of the two levels of caches:

Table 2-2 Enabling / Disabling combinations

Build Option value L1 Cache / MMU /
SCU L2 Cache

OS_SAME_L1_PAGE_TBL == -1
Disable Disable

OS_L2_BASE_ADDR == 0

OS_SAME_L1_PAGE_TBL != -1
Enable Disable

OS_L2_BASE_ADDR == 0

OS_SAME_L1_PAGE_TBL == -1

Disable Enable OS_L2_BASE_ADDR != 0
or OS_L2_BASE_ADDR undefined

OS_SAME_L1_PAGE_TBL != -1 Enable Enable

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 8

OS_L2_BASE_ADDR != 0
or OS_L2_BASE_ADDR undefined

The cache configuration module internally uses two or three definition tables. One of the tables defines the
memory blocks that are configured as cached/shared amongst all the cores. Another table defines where
are located the peripherals in the memory space, as it is necessary to bypass the caches when accessing
peripherals. A third table, when the feature is enabled, defines the virtual and physical addresses of the
private memory area of each core (non-shared memory).

2.2 Build Options

2.2.1 Number of cores
When operating the mAbassi RTOS on a platform, the RTOS needs to be configured for the number of
cores it has access to, or will use. This number is most of the time the same as the number of cores the
device has, but it can also be set to a value less than the total number of cores on the device, but not larger
obviously. This must be done for both the mAbassi.c file and the ARMv7_SMP_L1_L2_GCC.s file,
through the setting of the build option OS_N_CORE. In the case of the file mAbassi.c, OS_N_CORE is one
of the standard build options. In the case of the file ARMv7_SMP_L1_L2_GCC.s, to modify the number of
cores, all there is to do is to change the numerical value associated to the token definition of OS_N_CORE,
located around line 40; this is shown in the following table. By default, the number of cores is set to 2.

Table 2-3 OS_N_CORE modification

 .ifndef OS_N_CORE @ Number of cores the device has (2: min for multicore)
 .equ OS_N_CORE, 2 @ ==1: code almost identical to Abassi single core
 .endif

Alternatively, it is possible to overload the value assigned to OS_N_CORE in ARMv7_SMP_L1_L2_GCC.s by
using the assembler command line option --defsym and specifying the required number of cores, as
shown in the following example where the number of cores is set to 4:

Table 2-4 Command line set of OS_N_CORE (ASM)

arm-none-eabi-as … --defsym OS_N_CORE=4 …

Exactly the same value of OS_N_CORE as specified for the assembler must be specified for the compiler. In
the following example, the number of cores is set to 4 for the “C” files:

Table 2-5 Command line set of OS_N_CORE (C)

arm-none-eabi-gcc … -D OS_N_CORE=4 …

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 9

2.2.2 Thumb2
The cache configuration file (ARMv7_SMP_L1_L2_GCC.s) is by default using 32-bit ARM instructions.
The build option OS_ASM_THUMB (new in version 1.66.66) can be set to use Thumb2 instructions instead.
The use of Thumb2 instruction is enabled when the build option OS_ASM_THUMB is set to a non-zero; by
default, the token OS_ASM_THUMB is set to a non-zero value, enabling the special handling. As for other
tokens, the numerical value associated to the OS_ASM_THUMB token, located around line 95, can be changed
as shown in the following table:

Table 2-6 OS_ASM_THUMB modification

 #ifndef OS_ASM_THUMB
 .ifndef OS_ASM_THUMB
 .equ OS_ASM_THUMB, 1
 .endif
 #endif

It is also possible to overload the OS_ASM_THUMB value set in ARMv7_SMP_L1_L2_GCC.s by using the
assembler command line option --defsym and specifying the required base register index as shown in the
following example:

Table 2-7 Command line set of OS_ASM_THUMB (ASM)

arm-none-eabi-as … --defsym OS_ASM_THUMB=1 …

NOTE: Never use the --thumb command line option with the ARMv7_SMP_L1_L2_GCC.s file.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 10

2.2.3 Target Device
Each device has their own memory and peripheral mapping. As such, the valid memory ranges are quite
likely different and the L2 cache registers, which are not based on ARM’s peripheral base address, must be
known in order to be able to configure the L2 cache. The useable memory areas and the L2 register base
address are set by relying on the value assigned to the token OS_PLATFORM. At the time of writing this
document, the following platforms are supported:

Table 2-8 OS_PLATFORM valid settings

Target Platform OS_PLATFORM value

Altera / Cyclone V Soc FPGA 0xAAC5

Texas Instruments / OMAP 4460 0x4460

Xilinx / Zynq XC7Z020 0x7020

If in the future there are platforms that are not listed in the above table, the numerical values assigned to the
platform are specified in comments in the file ARMV7_SMP_L1_L2_GCC.s., right beside the internal
definition of OS_PLATFORM (around line 45).

To select the target platform, all there is to do is to change the numerical value associated with the token
OS_PLATFORM located around line 45 in the file mAbassi_SMP_CORTEXA9_GCC.s. By default, the target
platform is the Xilinx’s Zynq XC7Z020, therefore OS_PLATFORM is assigned the numerical value 0x7020.
The following table shows how to set the target platform to the Altera Cyclone V, which is assigned the
numerical value 0xAAC5:

Table 2-9 OS_PLATFORM modification

 .ifndef OS_PLATFORM @ Target platform
 .equ OS_PLATFORM, 0xAAC5 @ 0x4460 : TI OMAP4460
 .endif @ 0x7020 : Xilinx Zynq XC7Z020
 @ 0xAAC5 : Altera Cyclone V

Alternatively, it is possible to overload the value assigned to OS_PLATFORM in the file
mAbassi_SMP_CORTEXA9_GCC.s by using the assembler command line option --defsym and specifying
the target platform numerical value:

Table 2-10 Command line set of OS_PLATFORM

arm-none-eabi-as … --defsym OS_PLATFORM=0xAAC5 …

2.2.4 L1 Page Table(s) / L1 disabling
The L1 Cache and MMU use a 16Kbyte page table to hold the information of the caching and sharing
characteristics of each 1Mbyte page of the 4Gbyte total memory range, and that table also holds the
translation information from virtual to physical memory. If the whole useable memory map is shared, then
there is no need to use one table per core, as the individual tables are exactly the same. But if there are
some memory areas that are defined as private to a core, then each core must have its own private table.
The value assigned to the build option OS_SAME_L1_PAGE_TBL controls if each core has its own table or if
all cores share a single one. To give each core its own table (this is the default setting), the build option
OS_SAME_L1_PAGE_TBL must be set to a value of zero (0). To share the same table amongst all the cores,
the build option OS_SAME_L1_PAGE_TBL must be set to a non-zero value and non-minus one (-1) value.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 11

The build option OS_SAME_L1_PAGE_TBL can also be used to disable the L1 caches (data and instruction),
the MMU and SCU. Setting the build option to a value of minus one (-1) does not configure, nor enable
the L1 caches, the MMU, and the Snoop Control Unit (SCU).

The default setting is shown in the following table and this section of code is located around line 45 in the
file ARMv7_SMP_L1_L2_GCC.s:

Table 2-11 OS_SAME_L1_PAGE_TBL setting

 .ifndef OS_SAME_L1_PAGE_TBL @ If all cores share the same L1 page table
 .equ OS_SAME_L1_PAGE_TBL, 0 @ == 0: individual tables / > 0 single shared table
 .endif @ == -1: the L1 caches (I & D) are disabled / not used

To use a single table for all cores, the build option OS_SAME_L1_PAGE_TBL must be set a positive value as
shown in the following table:

Table 2-12 Using a single L1 page table

 .ifndef OS_SAME_L1_PAGE_TBL @ If all cores share the same L1 page table
 .equ OS_SAME_L1_PAGE_TBL, 1 @ == 0: individual tables / > 0 single shared table
 .endif @ == -1: the L1 caches (I & D) are disabled / not used

To disable the L1 caches (instruction and data), MMU and SCU, the build option OS_SAME_L1_PAGE_TBL
must be set to minus one (-1) as shown in the following table:

Table 2-13 Disabling the L1 cache / MMU / SCU

 .ifndef OS_SAME_L1_PAGE_TBL @ If all cores share the same L1 page table
 .equ OS_SAME_L1_PAGE_TBL, -1 @ == 0: individual tables / > 0 single shared table
 .endif @ == -1: the L1 caches (I & D) are disabled / not used

Alternatively, it is possible to overload the value assigned to OS_SAME_L1_PAGE_TBL in the file
ARMv7_SMP_L1_L2_GCC.s by using the assembler command line option --defsym and specifying the
desired setting, as shown in the following example where the L1 caches are disabled:

Table 2-14 Command line set of OS_SAME_L1_PAGE_TBL

arm-none-eabi-as … --defsym OS_SAME_L1_PAGE_TBL=-1 …

NOTE: If the build option OS_SAME_L1_PAGE_TBL is set to a positive value, meaning to use a single L1
page table for all cores, and the build option OS_USE_NON_SHARED (see Section 2.2.11) is set to a
non-zero value indicating non-shared (private) memory areas are defined, an error will be issued
during assembly, as it not possible to use the same L1 page table when the different cores have
their own private memory sections.

2.2.5 MMU Definition Tables
The MMU L1 tables are filled using definition tables (see Section 2.3 for more information on the
definition tables). By default, the definition tables are located in the file ARMv7_SMP_L1_L2_GCC.s. By
defining, and by setting the build option OS_MMU_EXTERN_DEF to a non-zero value, the definition tables
are imported from outside the file ARMv7_SMP_L1_L2_GCC.s.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 12

When the definition tables are imported, the imported variables replace the tables defined by the following
labels:

Table 2-15 OS_MMU_EXTERN_DEF synbols

Table Label Imported Symbol

SharedInfo G_MMUsharedTbl

NonCacheInfo G_MMUnonCachedTbl

PrivateInfo G_MMUprivateTbl

NonCprivInfo G_MMUnonCprivTbl

The way the imported table must be constructed is exactly the same as the internal tables are constructed
(see Section 2.3). Reusing the example in section 2.3.2 for the peripheral definition table, the imported
table should be like:

Table 2-16 Example peripheral definition table

int G_MMUnonCachedTbl[] = {0x00001000, 0xE0000000,
 0x01000000, 0xFF000000,
 0x00000000 };

The data type of the imported definition table can be either int, or void *, or any pointers type, as long as
the sizeof() of the data type selected is 4 bytes.

The default setting is shown in the following table, and this section of code is located around line 50 in the
file ARMv7_SMP_L1_L2_GCC.s:

Table 2-17 OS_MMU_EXTERN_DEF setting

 .ifndef OS_MMU_EXTERN_DEF @ If the defintion tables are imported
 .equ OS_MMU_EXTERN_DEF, 0 @ == 0: Not imported, use tables defined in here
 .endif @ != 0: Imported

The default setting can be changed importing the tables; this is shown in the next table:

Table 2-18 OS_MMU_EXTERN_DEF for invalid setting

 .ifndef OS_MMU_EXTERN_DEF @ If the defintion tables are imported
 .equ OS_MMU_EXTERN_DEF, 1 @ == 0: Not imported, use tables defined in here
 .endif @ != 0: Imported

Alternatively, it is possible to overload the value assigned to OS_MMU_EXTERN_DEF in the file
ARMv7_SMP_L1_L2_GCC.s by using the assembler command line option --defsym and specifying the
desired setting, as shown in the following example:

Table 2-19 Command line set of OS_MMU_EXTERN_DEF

arm-none-eabi-as … --defsym OS_MMU_EXTERN_DEF =1 …

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 13

2.2.6 Unused Pages
The unused L1 pages (the pages that are not mapped to a peripheral (non-cached) area, nor mapped as a
shared memory area, and not mapped in the non-shared (private) area) can be tagged as being either
invalid, which provokes an abort when read/written, or they can be tagged as valid cached/shared. The
value assigned to the build option OS_MMU_ALL_INVALID controls if the unused memory areas are set as
invalid or as shared. To set the unused memory as shared (this is the default setting), the build option
OS_MMU_ALL_INVALID must be set to a value of zero (0). To set the unused memory as invalid, the build
option OS_MMU_ALL_INVALID must be set to a non-zero value.

The default setting is shown in the following table, and this section of code is located around line 55 in the
file ARMv7_SMP_L1_L2_GCC.s:

Table 2-20 OS_MMU_ALL_INVALID setting

 .ifndef OS_MMU_ALL_INVALID @ If the unused memory pages are invalid or shared
 .equ OS_MMU_ALL_INVALID, 0 @ == 0: Unused memory set to cached/shared
 .endif @ != 0: Unused memory set to invalid

The default setting can be changed to tag all unused memory areas as invalid memory; this is shown in the
next table:

Table 2-21 OS_MMU_ALL_INVALID for invalid setting

 .ifndef OS_MMU_ALL_INVALID @ If the unused memory pages are invalid or shared
 .equ OS_MMU_ALL_INVALID, 1 @ == 0: Unused memory set to cached/shared
 .endif @ != 0: Unused memory set to invalid

Alternatively, it is possible to overload the value assigned to OS_MMU_ALL_INVALID in the file
ARMv7_SMP_L1_L2_GCC.s by using the assembler command line option --defsym and specifying the
desired setting, as shown in the following example:

Table 2-22 Command line set of OS_MMU_ALL_INVALID

arm-none-eabi-as … --defsym OS_MMU_ALL_INVALID=1 …

2.2.7 L1 Cache Branch Prediction
The L1 Cache can be set to use or to not use branch prediction. The value assigned to the build option
OS_L1_CACHE_BP controls if branch prediction is used or not. To not use branch prediction (this is the
default setting), the build option OS_L1_CACHE_BP must be set to a value of zero (0). To enable branch
prediction, the build option OS_L1_CACHE_BP must be set to a non-zero value.

The default setting is shown in the following table, and this section of code is located around line 60 in the
file ARMv7_SMP_L1_L2_GCC.s:

Table 2-23 OS_L1_CACHE_BP setting

 .ifndef OS_L1_CACHE_BP @ If enabling L1 cache branch prediction
 .equ OS_L1_CACHE_BP, 0 @ == 0: branch prediction disable
 .endif @ != 0: branch prediction enable

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 14

The default setting can be changed to enable the branch prediction; this is shown in the next table:

Table 2-24 Enabling branch prediction

 .ifndef OS_L1_CACHE_BP @ If enabling L1 cache branch prediction
 .equ OS_L1_CACHE_BP, 1 @ == 0: branch prediction disable
 .endif @ != 0: branch prediction enable

Alternatively, it is possible to overload the value assigned to OS_L1_CACHE_BP in the file
ARMv7_SMP_L1_L2_GCC.s by using the assembler command line option --defsym and specifying the
desired setting, as shown in the following example to enable L1 cache branch prediction:

Table 2-25 Command line set of OS_L1_CACHE_BP

arm-none-eabi-as … --defsym OS_L1_CACHE_BP=1 …

2.2.8 L1 / L2 Cache Pre-fetch
The L1 and L2 Cache can be set to use or to not use pre-fetch. The values assigned to the build option
OS_L1_CACHE_PF and OS_L2_CACHE_PF control if pre-fetching is used or not. To not use pre-fetching
(this is the default setting), the build option OS_L1_CACHE_PF / OS_L2_CACHE_PF must be set to a value
of zero (0). To enable pre-fetching, the build option OS_L1_CACHE_PF / OS_L2_CACHE_PF must be set to
a non-zero. L1 and L2 pre-fetching is independently controlled.

The default setting is shown in the following table, and this section of code is located around line 65 in the
file ARMv7_SMP_L1_L2_GCC.s:

Table 2-26 OS_L1_CACHE_PF setting

 .ifndef OS_L1_CACHE_PF @ If enabling L1 cache prefetch
 .equ OS_L1_CACHE_PF, 0 @ == 0: L1 cache prefetch disable
 .endif @ != 0: L1 cache prefetch disable

The default setting can be changed to enable the data pre-fetch; this is shown in the next table:

Table 2-27 Enabling data pre-fetch

 .ifndef OS_L1_CACHE_PF @ If enabling L1 cache prefetch
 .equ OS_L1_CACHE_PF, 1 @ == 0: L1 cache prefetch disable
 .endif @ != 0: L1 cache prefetch disable

Alternatively, it is possible to overload the value assigned to OS_L1_CACHE_BP in the file
ARMv7_SMP_L1_L2_GCC.s by using the assembler command line option --defsym and specifying the
desired setting, as shown in the following example to enable L1 cache pre-fetching:

Table 2-28 Command line set of OS_L1_CACHE_PF

arm-none-eabi-as … --defsym OS_L1_CACHE_PF=1 …

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 15

2.2.9 Full line of write zero
When using both the L1 and L2 caches, it is possible to activate a mechanism that sends information from
the L1 cache to the L2 cache when a cache line full of zero is written from the L1 cache to the L2 cache.
This feature helps speed-up operations alike memset() with a fill value of zero. The value assigned to the
build option OS_CACHE_WRITE_ZERO controls if the feature is enabled or not. To not enable the write zero
feature (this is the default setting), the build option OS_CACHE_WRITE_ZERO must be set to a value of
zero (0). To enable the feature, the build option OS_CACHE_WRITE_ZERO must be set to a non-zero.

The default setting is shown in the following table, and this section of code is located around line 70 in the
file ARMv7_SMP_L1_L2_GCC.s:

Table 2-29 OS_CACHE_WRITE_ZERO setting

 .ifndef OS_CACHE_WRITE_ZERO @ If enabling the write full line of zero write
 .equ OS_CACHE_WRITE_ZERO, 0 @ == 0: L1 cache prefetch disable
 .endif @ != 0: L1 cache prefetch disable

The default setting can be changed to enable the full line write of zero; this is shown in the next table:

Table 2-30 Enabling full line write of zero

 .ifndef OS_CACHE_WRITE_ZERO @ If enabling the write full line of zero write
 .equ OS_CACHE_WRITE_ZERO, 1 @ == 0: L1 cache prefetch disable
 .endif @ != 0: L1 cache prefetch disable

Alternatively, it is possible to overload the value assigned to OS_CACHE_WRITE_ZERO in
ARMv7_SMP_L1_L2_GCC.s by using the assembler command line option --defsym and specifying the
desired setting, as shown in the following example:

Table 2-31 Command line set of OS_CACHE_WRITE_ZERO

arm-none-eabi-as … --defsym OS_CACHE_WRITE_ZERO =1 …

NOTE: If the L1 cache is not enabled (OS_SAME_L1_PAGE_TBL is set to -1) or the L2 cache is not
enabled (OS_L2_BASE_ADDR is zero), then the option OS_CACHE_WRITE_ZERO is internally
considered as set to zero (the full line of write zero is not enabled).

2.2.10 L2C-310 Registers Base Address
The memory address where the L2C-310 Level 2 cache registers are located is not defined in reference to
the processor peripheral base address. As such, each device uses its unique base address for the L2 cache
registers. The build option OS_PLATFORM (see Section 2.2.3) and build option OS_L2_BASE_ADDRESS in
the file ARMv7_SMP_L1_L2_GCC.s are used to specify the base address of the L2C-310 cache registers.

When the build option OS_L2_BASE_ADDR is set to the value of zero (0), the L2 cache is disabled. When
it is set to minus one (-1), it means the base address of the L2C-310 registers is linker supplied, through the
symbol L2baseAddr. If the build option OS_L2_BASE_ADDR value is neither zero (0) nor minus one (-1),
then the value assigned to the build option is the base address of the L2C-310 cache registers. Finally, if
the build option is NOT defined, the value is internally determined using the definition of the build option
OS_PLATFORM.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 16

The definition of the build option OS_L2_BASE_ADDR is located at a few places in the file
ARMv7_SMP_L1_L2_GCC.s. The different declarations are inside a conditional block corresponding the
definition of the build option OS_PLATFORM.

Table 2-32 L2 cache default base address

 @ ---
 .ifndef OS_L2_BASE_ADDR @ Base address of the L2C-310 L2 cache registers
 .equ OS_L2_BASE_ADDR, 0xFFFEF000 @ When == -1, use linker defined symbol L2baseAddr
 .endif @ To not configure / use L2 cache, set == 0

It is possible to overload the OS_L2_BASE_ADDR value set in ARMv7_SMP_L1_L2_GCC.s by using the
assembler command line option --defsym and specifying the desired setting (here is to use the linker
supplied symbol L2baseAddr) with the following:

Table 2-33 Command line set of OS_L2_BASE_ADDR

arm-none-eabi-as … --defsym OS_L2_BASE_ADDR=-1 …

For example, the following platforms use these addresses:

Table 2-34 L2 base addresses

Target Platform L2 base address

Altera / Cyclone V Soc FPGA 0xFFFEF000

Texas Instruments / OMAP 4460 0x48242000

Xilinx / Zynq XC7Z020 0xF8F02000

2.2.11 Non-shared memory
The L1 cache and MMU allow each core to have non-shared (private) memory pages dedicated to them.
The value specified by the build option OS_USE_NON_SHARED controls if private memory pages are set-up
by the cache configuration module or not. To not support private memory (this is the default setting), the
build option must be set to a value of zero (0). To set-up private memory areas (the areas are defined by
the private memory definition table, see Section 2.3.3) the build option must be set to a value of non-zero.

The default setting, which is to not set-up private memory for the cores, a value of zero (0), is shown in the
following table and is located around line 70 in the file ARMv7_SMP_L1_L2_GCC.s:

Table 2-35 OS_USE_NON_SHARED setting

 .ifndef OS_USE_NON_SHARED
 .equ OS_USE_NON_SHARED, 0
 .endif

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 17

It is possible to overload the OS_USE_NON_SHARED value set in ARMv7_SMP_L1_L2_GCC.s by using the
assembler command line option --defsym and specifying the desired setting, as shown in the following
example:

Table 2-36 Command line set of OS_USE_NON_SHARED

arm-none-eabi-as … --defsym OS_USE_NON_SHARED=1 …

NOTE: Enabling the use of non-shared memory requires each core to have it own page table. An error
message is issued during the assembly phase if the build option OS_USE_NON_SHARED is non-zero
(to use non-shared memory) and the build option OS_SAME_L1_PAGE_TBL (see Section 2.2.4) is
set to a non-zero value (all cores use the same page table).

2.2.12 Non-cache attribute
Non-cache accesses can be set with one of two attributes: “Device” or “Strongly Ordered”. The difference
is very well explained in this post from the Arm Community forum:

Device accesses are only ordered with respect to other Device accesses, whilst Strongly-Ordered are
ordered with respect to *all* other explicit load/stores. e.g. load-norm-A, load-dev-B, load-dev-C, load-
norm-D could be performed as ADBC, or even DBCA; whilst load-norm-A, load-so-B, load-so-C, load-
norm-D must be performed as ABCD

Another difference between the two is on the AXI bus AxCACHE values. “Device” sets the AxCACHE value
to 0001b and “Strongly Ordered” sets the AxCACHE values to 0000b.

The non-cache access attribute is set by the value assigned to the build option OS_NC_STRONG_ORDER.
This is a bit field, where bit #0 specifies the attribute for the shared non-cache accesses and bit #1 specifies
the attributes for the private (non-shared) non-cached accesses. A bit clear to 0 selects the access as
“Device”, and when set to 1 it selects the accesses to “Strongly Ordered”. The default value of
OS_NC_STRONG_ORDER is 0, specifying all non-cache accesses attributes to be “Device”.

2.2.13 ARM Cache Errata
ARM has issued a few patches to repair errata in the cache module. mAbassi’s cache module has code that
implements the known errata. By default, no errata code is inserted in the cache code. There are two ways
to enable errata code. One is to set the build option OS_ARM_ERRATA_ALL to a non-zero value. Doing so
will insert the code for all supported errata but, depending on the revision and variant of the core, only the
applicable patches are applied. The other way is to only add specific erratum code. This is done by not
defining OS_ARM_ERRATA_ALL (or by defining it and setting it to a value of zero) and then defining as
non-zero values individual built options OS_ARM_ERRATA_NNNNNN, where NNNNNN is the ARM erratum
number to activate. As for all build options, the setting of the cache errata build options can be performed
either by changing the code directly in the file ARMv7_SMP_L1_L2_GCC.s or by a define on the assembler
command line (refer to previous sections on how to do this).

The following table shows all errata numbers for which the repair code was added in the file
ARMv7_SMP_L1_L2_GCC.s. For further details on these errata, either go on ARM website, or perform a
quick search on the Web.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 18

Table 2-37 Cache Errata handle by ARMv7_SMP_L1_L2_GCC.s

Erratum Revision Description

742230 r1p0 to r2p2 DMB between 2 writes may not work.

742231 r2p0 to r2p2 In SMP, when 2 core access same line, data corruption could
occur.

743622 All r2p* Possible data corruption.

751472 All prior to r3p0 Interrupted ICIALLUIS may not complete (only needed in SMP
mode).

753970 r3p0 Buffer can remain in the PL310 L2 cache after the sync
operation is completed.

764369 All MPcore versions
Data cache line maintenance operation by MVA targeting an
Inner Shareable memory region may fail. All code doing
maintenance must add DSB instruction.

The following table shows ARM cache errata that cannot be corrected by the code in the file
ARMv7_SMP_L1_L2_GCC.s as these errata require the application code to add perform special handling:

Table 2-38 Cache errata to be handle by the application

Erratum Revision Description

588369 Non applicable as the L2 cache supported is PL310 and not
PL210.

720789 All prior to r2p0 Must invalidate all TLB entries when flushing.

754322 All r2p* and r3p* A DSB instruction must be inserted before an ASID change.

754327 All prior to r2p0 Memory access barriers must be added in the application code.

775420 r2p2 to r3p0
See Abort_Handler in mAbassi_SMP_CORTEXA9_GCC.s. If
required, the data abort handler must be upgraded if recovery
from the fault is needed.

2.3 Tables
The cache configuration module uses internal definition tables to specify the characteristics of different
memory areas. Three tables are used:

Ø Shared / cached memory

Ø Shared / un-cached memory (typically for peripherals)

Ø Private memory (optional table)

At around line 80 in the file in ARMv7_SMP_L1_L2_GCC.s, one will find a commented-out block of
statements that shows how these three tables are set-up. This is a detailed example and is not used. Past
around line 110, the real tables are defined. There is one set of table per known platform. These sets of
table are the ones used and should be modified as required by the target application.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 19

2.3.1 Shared Memory
The shared memory definition table contains all the information needed to program the MMU page table to
select the address space to be cached and shared amongst all the cores. The way the table is constructed is
through the use of pairs of numerical values. These pairs specify the base address of the memory block and
the address range of the memory block. There can be as many pairs as the system requires, and cached /
shared memory blocks don’t need to be in contiguous memory pages.

The table is referenced by the label SharedInfo. The first entry in a pair is the number of bytes the
memory block spans and the second value in a pair is the base address of memory block. The table must be
terminated with a size of 0.

The example shared memory definition table is located around line 85 in the file
ARMv7_SMP_L1_L2_GCC.s, as shown in the following table:

Table 2-39 Example shared memory definition table

 .if ((OS_MMU_ALL_INVALID) != 0)
SharedInfo: @ Table to define the shared/cached memory areas
@ ----------- SIZE ----- ADDRESS -- @ when the whole table sdefaults to invalid
 .long 0x00100000, 0x02000000 @ The table holds pairs of value (size, base) and
 .long 0 @ is terminated with a size of 0
 .endif

2.3.2 Peripheral Addresses
The peripheral memory definition table contains all the information needed to program the page table to
make the address space occupied by the peripherals a non-cached shared area. The way the table is
constructed is through the use of pairs of numerical values. These pairs specify the base address of the
peripherals and the address range of peripheral registers. There can be as many pairs as the system
requires, as peripherals registers addresses do not need to be in contiguous memory pages. For example, a
system could have a peripheral where its registers are located between addresses 0xE0000000 and
0xE0000FFF and all the rest of the peripheral registers are located between addresses 0xFF000000 and
0xFFFFFFFF.

The table is referenced by the label PeriphInfo. The first entry in a pair is the number of bytes the block
of peripheral register spans and the second value in a pair is the base address of the peripheral register
block. The table must be terminated with a size of 0.

The example peripheral definition table is located around line 90 in the file ARMv7_SMP_L1_L2_GCC.s.
Taking the simple example described above, the table should be filled as follows:

Table 2-40 Example peripheral definition table

NonCacheInfo:
@ ----------- SIZE ----- ADDRESS --------- @ Table to define the non-cached /
peripheral areas
 .long 0x00001000, 0xE0000000 @ Size of the page / Base address of the page
 .long 0x01000000, 0xFF000000
 .long 0 @ Size = 0 is the end of the definition table

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 20

Although the Cache / MMU memory pages are 1 Mbyte (0x00100000), if the specified size for a block of
peripheral registers is not an exact multiple of 0x00100000, it will be internally set at the ceil value to the
next exact multiple of 1Mbyte. In the case of the base address, if the specified address for a block of
registers is not an exact multiple of 0x00100000, it will be internally set at the floored value to the next
exact multiple of 1M. It is strongly advised to always specify the sizes and addresses in exact multiple of
1 Mbyte as a page crossing with a size too small will end up doing an incorrect set-up. An example of a
bad definition is to set a size of 0x00001000 for a base address of 0x8FFFFF00.

2.3.3 Private Memory
The private memory definition table is used to program the page table to make the address space assigned
as private to a core; this means memory pages that are cached or un-cached but non-shared and non-
coherent. The way the table is constructed is through the use of triplets of numerical values. These triplets
specify the virtual base address of a private memory section (the memory pages base address the core sees),
the physical base address of that private memory section (the base address in the physical memory), and the
size of the private memory section. There can be as many triplets as the application requires, therefore the
different private sections of memory do not need to be contiguous.

As an example, let’s take a 4-core device and the application requires each core to have 16Mbyte of private
memory each. Assuming the private memory is seen by each at address 0x80000000, then 4 physical
blocks of 16Mbyte of memory are required; one block per core. The 4 blocks of physical memory reserved
for the private memory are located at addresses 0x80000000, 0x81000000, 0x82000000 and
0x83000000). Once the page table is configured, none of the cores will have access to the memory
located between addresses 0x81000000 to 0x83FFFFFF and each core will have its own private memory
between the addresses 0x80000000 and 0x80FFFFFF.

The table for the cached memory is referenced by the label PrivateInfo, and the table for the un-cached
memory is referenced by NonCprivInfo. The first entry in a triplet is the number of bytes the block of
private memory spans. The second value in a triplet is the virtual base address of the private memory block.
The third entry is the base address of the physical memory attached to that private memory block. The
table must be terminated with a size of 0 for each core and there must be at least as many zero-size
terminated groups as there are cores in the application (as defined by OS_N_CORE Section 2.2.1).

The example for the private memory definition table is located around line 100 in the file
ARMv7_SMP_L1_L2_GCC.s.

Taking the example described above, the table should be filled as follows:

Table 2-41 Example private memory definition table

.if ((OS_USE_NON_SHARED) != 0) && ((OS_N_CORE) > 1)
PrivateInfo: @ Table to define the core private memory area
@ ------------ SIZE ------ V ADDR -- PH ADDR -- @ Terminated with 0 Size.
 .long 0x01000000, 0x80000000, 0x80000000 @ Triplets: Size / Virt addr / Phys addr
 .long 0 @ Core #0 Non-shared: 0x80000000 mapped to 0x80000000

 .long 0x01000000, 0x80000000, 0x81000000
 .long 0 @ Core #1 Non-shared: 0x80000000 mapped to 0x81000000

 .long 0x01000000, 0x80000000, 0x82000000
 .long 0 @ Core #2 Non-shared: 0x80000000 mapped to 0x82000000

 .long 0x01000000, 0x80000000, 0x83000000
 .long 0 @ Core #3 Non-shared: 0x80000000 mapped to 0x83000000

 .endif

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 21

NOTE: COREcacheON() does not check for the overlapping of physical memory pages between cores. If
the definition table has such an error, the results are unpredictable.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 22

3 Implementation
The cache configuration performs the following operations in this listed order

Ø Disabling of the L1 Caches & MMU & SCU.

Ø Invalidation and flushing of the L1 caches

Ø L1 cache is enabled

Ø The page table set-up for the whole memory as cached and shared

Ø The page table entries are set-up for the peripheral addresses (non-cached)

Ø The page table entries of all cores private memory is set to non-accessible

Ø The page table entries for the current core private memory are set up

Ø The MMU is set-up and enabled

Ø The SCU is set-up and enabled (Core #0 only)

Ø The L2 cache is set-up and enabled (Core #0 only)

Of the steps involved, only a few need explanation. These are the ones where the L1 page table is set-up.
The explanation assume individual page table (the build option OS_SAME_L1_PAGE_TBL set to non-zero
and not minus one (-1)).

The first step performed in filling the page table is to write in all 4096 entries of the table the configuration
of the cache as coherent memory, and for the MMU to make all virtual addresses the same as the physical
addresses. This means the whole addressing space is declared shared, meaning the caches are set be
coherent for the whole address space.

The second step fills the entries related to the peripheral addresses held in the peripheral definition table.
These entries are set as non-shared with caching disabled. There are no provisions to map the physical
addresses of the peripheral addresses into different virtual ones.

The third and optional step (when OS_USE_NON_SHARED is non-zero) fills the entries in the page table that
defines private (non-shared) memory pages. When a memory page is made private to a core, two things
happen: the physical memory page is made unavailable to the other cores and the virtual address of the
memory page is most likely different from the physical memory page. The first thing done when the
information on the private memory page is inserted in the page table is to invalidate all the physical
memory pages that are declared private, no matter if the definition is for the current core or another one.
Doing so as a first step guarantees that all private pages are inaccessible. Then the private memory pages
of the current core only are configured in the page table. It is this configuration that assigns the virtual
page to the physical page and declares them as non-shareable and non-coherent.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 23

4 API
A single function (COREcacheON()) is supplied in this distribution. The following sub-section describes
the COREcacheON() function.

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 24

4.1 COREcacheON

Synopsis
#include “mAbassi.h”

void COREcacheON (void);

Description

COREcacheON() is the module used to configure and enable the L1 and L2 caches, the
MMU and the SCU. The build option values needed to set-up the cache as required by the
application are described earlier in this document.

Availability

Optional module.

Arguments
void

Returns
void

Component type

Function

Options

Notes

See also

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 25

4.2 DCacheFlushRange

Synopsis
#include “mAbassi.h”

DCacheFlushRange(void *Addr, int Len);

Description

DCacheFlushRange() is used to flush (write the cache contents in the external RAM) a
range of data addresses from the L1 and/or L2 cache. The base address to flush is specified
with the argument Addr and the number of consecutive addresses to flush is specified by the
argument Len. As the L1 and L2 caches lines are 32 bytes and because only full cache
linescan be flushed, the real start address is the exact multiple by 32 bits address that is lower
or equal to the argument Addr. This also mean the real final address will be the address with
an exact multiple of 32 minus 1, that is greater or equal to (Addr + Len -1).

Availability

Optional module.

Arguments

Addr: Start address (lower) of the memory range to flush from the L1 and/or L2 cache
Len: Number of consecutive addresses of the memory range to flush from the L1

and/or L2 cache.

Returns
void

Component type

Function

Options

Notes

See also

DCacheInvalRange() Section 0

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 26

4.3 DCacheInvalRange

Synopsis
#include “mAbassi.h”

DCacheInvalRange(void *Addr, int Len);

Description

DCacheInvalRange() is used to invalidate (to force a re-reading the external memory) a
range of data addresses from the L1 and/or L2 cache. The base address to invalidate is
specified with the argument Addr and the number of consecutive addresses to invalidate is
specified by the argument Len. As the L1 and L2 caches lines are 32 bytes and because only
full cache lines can be invalidated, the real start address is the exact multiple by 32 bits
address that is lower or equal to the argument Addr. This also mean the real final address
will be the address with an exact multiple of 32 minus 1, that is greater or equal to (Addr +
Len -1).

Availability

Optional module.

Arguments

Addr: Start address (lower) of the memory range to invalidate from the L1 and/or L2
cache

Len: Number of consecutive addresses of the memory range to invalidate from the
L1 and/or L2 cache.

Returns
void

Component type

Function

Options

Notes

See also

DCacheFlushRange() Section 4.2

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 27

4.4 MMUlog2Phy

Synopsis
#include “mAbassi.h”

void *MMUlog2Phy(const void *Addr);

Description

MMUlog2phy() is used report the physical address associated to a logical address. This
information is needed when non-shared memory must be accessed externally from the
processor.

Availability

Optional module.

Arguments

Addr: Logical address to report the physical location

Returns

void * Physical address

Component type

Function

Options

Notes

See also

MMUphy2Log() Section 4.5

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 28

4.5 MMUphy2Log

Synopsis
#include “mAbassi.h”

void *MMUphy2Log(const void *Addr);

Description

MMUphy2Log() is used report the logical address associated to a physcial address. This
information could be useful with non-shared.

Availability

Optional module.

Arguments

Addr: Physical address to report the physical location

Returns

void * Logical address

Component type

Function

Options

Notes

See also

MMUlog2Phy() Section 4.4

mAbassi RTOS BSP - ARMv7 Caches (GCC) 2017.09.30

Rev 1.13 Page 29

5 References
[R1] mAbassi Port – SMP ARM Cortex A9, available at http://www.code-time.com
[R2] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R3] Abassi – ARMv7 Caches

