
Copyright Information
This document is copyright Code Time Technologies Inc. ©2017. All rights reserved. No part of this document may be reproduced
or distributed in any form by any means, or stored in a database or retrieval system, without the written permission of Code Time
Technologies Inc.
Code Time Technologies Inc. may have patents or pending applications covering the subject matter in this document. The furnishing
of this document does not give you any license to these patents.

CODE TIME TECHNOLOGIES

mAbassi RTOS
BSP Document

ARMv8 Caches (GCC)

Disclaimer
Code Time Technologies Inc. provides this document “AS IS” without warranty of any kind, either expressed or implied, including,
but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Code Time Technologies Inc. does not warrant that the contents of this document will meet your requirements or that the document is
error-free. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. Code Time Technologies Inc. may make improvements and/or changes in the product(s) and/or program(s) described in
the document at any time. This document does not imply a commitment by Code Time Technologies Inc. to supply or make generally
available the product(s) described herein.

ARM and Cortex are registered trademarks of ARM Limited. Sourcery CodeBench is a registered trademark of Mentor Graphics. All
other trademarks are the property of their respective owners.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 3

Table of Contents
1 INTRODUCTION .. 6

1.1 DISTRIBUTION CONTENTS .. 6
1.2 LIMITATIONS .. 6
1.3 FEATURES ... 6

2 TARGET SET-UP .. 7
2.1 BUILD OPTIONS & TABLES ... 7
2.2 BUILD OPTIONS .. 7

2.2.1 Number of cores .. 8
2.2.2 Target Device .. 8
2.2.3 Number of L1 Page Table(s) ... 8
2.2.4 Page Tables ... 9
2.2.5 MMU Definition Tables .. 9
2.2.6 Unused Pages .. 10
2.2.7 Number of Level 2 and 3 tables .. 10
2.2.8 Non-cache attribute .. 10
2.2.9 ARM Cache Errata ... 11

2.3 TABLES ... 11
2.3.1 Shared Memory ... 11
2.3.2 Peripheral Addresses .. 11
2.3.3 Private Memory .. 12
2.3.4 Overlapping Regions .. 13

3 IMPLEMENTATION .. 14
4 API .. 15

4.1 CORECACHEON .. 16
4.2 DCACHEFLUSHRANGE ... 17
4.3 DCACHEINVALRANGE ... 18
4.4 MMULOG2PHY .. 19
4.5 MMUPHY2LOG .. 20

5 REFERENCES .. 21
6 REVISION HISTORY ... 22

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 4

List of Figures

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 5

List of Tables
TABLE 1-1 DISTRIBUTION ... 6
TABLE 2-1 BUILD OPTIONS ... 7
TABLE 2-2 COMMAND LINE SET OF OS_BUILD_OPTON (ASM) ... 8
TABLE 2-3 COMMAND LINE SET OF OS_BUILD_OPTION (C) .. 8
TABLE 2-4 OS_BUILD_OPTION MODIFICATION .. 8
TABLE 2-5 OS_PLATFORM VALID SETTINGS .. 8
TABLE 2-6 OS_MMU_EXTERN_DEF SYNBOLS .. 10
TABLE 2-7 EXAMPLE PERIPHERAL DEFINITION TABLE .. 10
TABLE 2-8 EXAMPLE SHARED MEMORY DEFINITION TABLE ... 11
TABLE 2-9 EXAMPLE PERIPHERAL DEFINITION TABLE .. 12
TABLE 2-10 EXAMPLE PRIVATE MEMORY DEFINITION TABLE .. 13

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 6

1 Introduction
This document details the L1, L2 and L3 caches, memory management unit (MMU) support BSP module
for the multi-core mAbassi RTOS. This module is targeted to the ARM v8 multi-core processor, more
specifically the Arm53 MPcore, using GCC

1.1 Distribution Contents
The set of files supplied with this distribution are listed in Table 1-1 below:

Table 1-1 Distribution

File Name Description

ARMv8_SMP_L1_L2_GCC.s Cache configuration and enabling code

1.2 Limitations
The file ARMv8_SMP_L1_L2_GCC.s, described here, can only be use with the multi-core RTOS mAbassi.
For the single core Abassi, the file ARMv8_L1_L2_GCC.s must be used [R2].

1.3 Features
This cache BSP module handles the configuration and enabling of the MPcore L1, L2 and L3 (when
present) cache, and the memory management unit (MMU). All four (4) levels of MMU tables are supported
meaning the granularity of control for the type of caching of the address space can be configured on
segments as small as 4096 bytes.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 7

2 Target Set-up
All there is to do to configure and enable the ARMv8 caches is to include in the build the file
ARMv8_SMP_L1_L2_GC.s. either in a makefile or with the development tool GUI.

2.1 Build Options & Tables
The file ARMv8_SMP_L1_L2_GCC.s relies on a few build options for its configuration and some definition
tables for setting up of the L1, L2 and L3 caches and the MMU. The build options are listed in the
following table:

Table 2-1 Build options

Build Option Description

OS_N_CORE Number of cores the application uses

OS_PLATFORM Specifies the target platform

OS_SAME_L1_PAGE_TBL Select if a single MMU set of page table is used or if each core has its
own MMU table. The name is kept the same as the ARMv7.

OS_MMU_ALL_INVALID Select if the MMU sets the unused pages as invalid or shared

OS_MMU_EXTERN_DEF Select if the MMU definition tables are imported or local

OS_MMU_TBL_2 Number of level #2 tables

OS_MMU_TBL_3 Number of level #3 tables

OS_NC_STRONG_ORDER Select if non-cache memory has the “device” or “strongly ordered”
property

The cache configuration module internally uses three definition tables. One of the tables defines the
memory blocks that are configured as cached/shared amongst all the cores. Another table defines where
are located the peripherals in the memory space as it is necessary to bypass the caches when accessing
peripherals; this table if for non-cached memory. A third table defines the virtual and physical addresses of
the private memory area of each core (non-shared memory). These tables are described in more details in
section 2.3.

2.2 Build Options
All build options can be set (overloaded) through the command line. Using a fictitious build option
OS_BUILD_OPTION, the default value assigned to OS_BUILD_OPTION in ARMv8_SMP_L1_L2_GCC.s can
be overloaded by using the assembler command line option --defsym and specifying the new value
(1234), as shown in the following example:

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 8

Table 2-2 Command line set of OS_BUILD_OPTON (ASM)

aarch64-none-eabi-as … --defsym OS_BUILD_OPTION=1234 …

The default value of OS_BUILD_OPTION could be overloaded if the compiler is used to assemble the file.
In the following example, the new value is set to 6789:

Table 2-3 Command line set of OS_BUILD_OPTION (C)

aarch64-none-eabi-gcc … -D OS_BUILD_OPTON=6789 …

All default build options are set as show on this table and can be directly changed by editing the .equ
value in ARMv8_SMP_L1_L2_GCC.s:

Table 2-4 OS_BUILD_OPTION modification

#ifndef OS_BUILD_OPTION
 .ifndef OS_BUILD_OPTION
 .equ OS_BUILD_OPTION, 32 // Build option example
 .endif
#endif

2.2.1 Number of cores
When operating the mAbassi RTOS on a platform, the RTOS needs to be configured for the number of
cores it has access to, or will use. This number is most of the time the same as the number of cores the
device has, but it can also be set to a value less than the total number of cores on the device, but not larger
obviously. This must be done for both the mAbassi.c file and the ARMv8_SMP_L1_L2_GCC.s file,
through the setting of the build option OS_N_CORE. In the case of the file mAbassi.c, OS_N_CORE is one
of the standard build options. If OS_N_CORE is not specified, the default value used depends on the target
platform defined by the build option OS_PLATFORM (next section)

2.2.2 Target Device
Each device/platform has its own memory and peripheral mapping. As such, the valid memory ranges are
quite likely different between targets. The default MMU tables are set based on the value assigned to the
token OS_PLATFORM. At the time of writing this document, the following platforms are supported:

Table 2-5 OS_PLATFORM valid settings

Target Platform OS_PLATFORM value

Xilinx / UltraScale+ 0x7753

If in the future there are platforms that are not listed in the above table, the numerical values assigned to the
platform are specified in comments in the file ARMV8_SMP_L1_L2_GCC.s., right beside the internal
definition of OS_PLATFORM.

2.2.3 Number of L1 Page Table(s)
The L1 Cache and MMU use a 4 levels of page tables to hold the information of the caching and sharing
characteristics all memory area, and that table also holds the translation information from virtual to

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 9

physical memory. If the whole useable memory map is shared, then there is no need to use one table per
core, as the individual tables are exactly the same. But if there are some memory areas that are defined as
private to a core, then each core must have its own private table. The value assigned to the build option
OS_SAME_L1_PAGE_TBL controls if each core has its own table or if all cores share a single one. To give
each core its own table (this is the default setting), the build option OS_SAME_L1_PAGE_TBL must be set to
a value of zero (0). To share all the tables amongst all the cores the build option OS_SAME_L1_PAGE_TBL
must be set to a non-zero value.

NOTE: If the build option OS_SAME_L1_PAGE_TBL is set to a positive value, meaning to use a single L1
page table for all cores, and both non-shared tables are not filled with all zeros, the problem is
trapped during run-time and the cache initialization code enters an infinite loop.

2.2.4 Page Tables
The Cache and MMU use 4 levels of page tables to hold the information of the caching and sharing
characteristics of each 4 KB pages of the total memory range, and these tables also hold the translation
information from virtual to physical memory. If the whole useable memory map is shared (same for all
cores), then there is no need to use one set of table per core, as the individual tables are exactly the same.
But if there are some memory areas that are defined as private to a core, then each core must have its own
private table. The value assigned to the build option OS_SAME_L1_PAGE_TBL controls if each core has its
own table or if all cores share a single one. To give each core its own table (this is the default setting), the
build option OS_SAME_L1_PAGE_TBL must be set to a value of zero (0). To share the same table amongst
all the cores, the build option OS_SAME_L1_PAGE_TBL must be set to a non-zero value. If the private
definition table specified private memory regions and OS_SAME_L1_PAGE_TBL is set to a non-zero value,
the problem is trapped at run time and an infinite loop is entered. By looking at the comments on the right
of the infinite loop instruction indicated the need to use individual set of table per cores.

2.2.5 MMU Definition Tables
The MMU tables are filled using the definition tables (see Section 2.3 for more information on the
definition tables). By default, the definition tables are located in the file ARMv8_SMP_L1_L2_GCC.s. By
setting the build option OS_MMU_EXTERN_DEF to a non-zero value, the definition tables are imported from
outside the file ARMv8_SMP_L1_L2_GCC.s.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 10

When the definition tables are imported, the imported variables replace the tables defined by the following
labels:

Table 2-6 OS_MMU_EXTERN_DEF synbols

Table Label Imported Symbol

SharedInfo G_MMUsharedTbl

NonCacheInfo G_MMUnonCachedTbl

PrivateInfo G_MMUprivateTbl

NonCprivInfo G_MMUnonCprivTbl

The way the imported table must be constructed is exactly the same as the internal tables are constructed
(see Section 2.3). Reusing the example in section 2.3.2 for the peripheral definition table, the imported
table should be like:

Table 2-7 Example peripheral definition table

int64_t G_MMUnonCachedTbl[] = {0x0000000000001000, 0x00000000E0000000,
 0x0000000001000000, 0x0000000FF0000000,
 0x0000000000000000 };

2.2.6 Unused Pages
The unused pages (the pages that are not mapped to a peripheral (non-cached) area, nor mapped as a shared
memory area, and not mapped in the non-shared (private) area) can be tagged as being either invalid to
provokes an abort when read/written, or they can be tagged as valid cached/shared. The value assigned to
the build option OS_MMU_ALL_INVALID controls if the unused memory areas are set as invalid or as
shared. To set the unused memory as shared (this is the default setting), the build option
OS_MMU_ALL_INVALID must be set to a value of zero (0). To set the unused memory as invalid, the build
option OS_MMU_ALL_INVALID must be set to a non-zero value.

2.2.7 Number of Level 2 and 3 tables
The MMU tables can traverse 4 levels of table: from level 0 to 3. The number of level 0 and level 1 tables
is always the same, but the number of level 2 and level 3 required depends entirely on memory mapping
used in the MMU definition tables. By default, the maximum number of level 2 and level 3 is set to 32 for
each level and for each core. If 32 tables are insufficient, the problem is trapped during run-time and the
cache initialization code enters an infinite loop. Comments in uppercase letters on the right of the infinite
loop indicates which table level is undersized. To modify the maximum number of level 2 tables, set the
build option OS_MMU_TBL_2 to a larger value than 32. If it’s the number of level 3 tables that is undersize,
set the build option OS_MMU_TBL_3 to a larger value than 32.

2.2.8 Non-cache attribute
Non-cache accesses can be set with one of two attributes: “Device” or “Strongly Ordered”. On the
ARMv8, the documentation states both attributes are the same at the CPU level; the difference between the
two been on the AXI bus AxCACHE values. “Device” sets the AxCACHE value to 0001b and “Strongly
Ordered” sets the AxCACHE values to 0000b.

The non-cache access attribute is set by the value assigned to the build option OS_NC_STRONG_ORDER.
This is a bit field, where bit #0 specifies the attribute for the shared non-cache accesses and bit #1 specifies
the attributes for the private (non-shared) non-cached accesses. A bit clear to 0 selects the access as
“Device”, and when set to 1 it selects the accesses to “Strongly Ordered”. The default value of
OS_NC_STRONG_ORDER is 0, specifying all non-cache accesses attributes to be “Device”.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 11

2.2.9 ARM Cache Errata
None of the current ARM v8 Cache errata affect the Cache BSP or mAbassi code.

2.3 Tables
The cache configuration module uses internal definition tables to specify the characteristics of different
memory areas. Three tables are used:

Ø Shared / cached memory

Ø Shared / un-cached memory (typically for peripherals)

Ø Private memory (non-shared) / cached memory

Ø Private memory (non-shared) / uncached memory

At around line 100 in the file in ARMv8_SMP_L1_L2_GCC.s, one will find a commented-out block of
statements that shows how these three tables are set-up. This is a detailed example and is not used. Past
around line 120, the real default tables are defined. There is one set of table per known platform. These
sets of table are the ones used and should be modified as required by the target application, or overloaded
by imported them by setting the build option OS_MMU_EXTERN_DEF (Sect 2.2.5) to a non-zero value.

2.3.1 Shared Memory
The shared memory definition table contains all the information needed to program the MMU page table to
select the address space to be cached and shared amongst all the cores. The way the table is constructed is
through the use of pairs of numerical values. These pairs specify the base address of the memory block and
the address range of the memory block. There can be as many pairs as the system requires, and cached /
shared memory blocks don’t need to be in contiguous memory pages.

The table is referenced by the label SharedInfo. The first entry in a pair is the number of bytes the
memory block spans and the second value in a pair is the base address of memory block. The table must be
terminated with a size of 0.

Table 2-8 Example shared memory definition table

SharedInfo: // Table to define the shared/cached memory areas
@ ----------- SIZE ----- ADDRESS -- // when the whole table sdefaults to invalid
 .8byte 0x00100000, 0x02000000 // The table holds pairs of value (size, base) and
 .8byte 0 // is terminated with a size of 0

2.3.2 Peripheral Addresses
The peripheral memory definition table contains all the information needed to program the page table to
make the address space occupied by the peripherals a non-cached shared area. The way the table is
constructed is through the use of pairs of numerical values. These pairs specify the base address of the
peripherals and the address range of peripheral registers. There can be as many pairs as the system
requires, as peripherals registers addresses do not need to be in contiguous memory pages. For example, a
system could have a peripheral where its registers are located between addresses 0xE0000000 and
0xE0000FFF and all the rest of the peripheral registers are located between addresses 0xFF000000 and
0xFFFFFFFF.

The table is referenced by the label PeriphInfo. The first entry in a pair is the number of bytes the block
of peripheral register spans and the second value in a pair is the base address of the peripheral register
block. The table must be terminated with a size of 0.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 12

The example peripheral definition table is located around line 90 in the file ARMv8_SMP_L1_L2_GCC.s.
Taking the simple example described above, the table should be filled as follows:

Table 2-9 Example peripheral definition table

NonCacheInfo:
@ ----------- SIZE ----- ADDRESS --------- // Table to define the non-cached /
peripheral areas
 .8byte 0x00001000, 0xE0000000 // Size of the page / Base address of the page
 .8byte 0x01000000, 0xFF000000
 .8byte 0 // Size = 0 is the end of the definition table

Although the minimum Cache / MMU memory pages are 4KB (0x00001000), if the specified size for a
block of peripheral registers is not an exact multiple of 0x00001000, it will be internally set at the ceil
value to the next exact multiple of 4KB. In the case of the base address, if the specified address for a block
of registers is not an exact multiple of 0x00001000, it will be internally set at the floored value to the next
exact multiple of 4KB. It is strongly advised to always specify the sizes and addresses in exact multiple of
4 KB as a page crossing with a size too small will end up doing an incorrect set-up. An example of a bad
definition is to set a size of 0x00000100 for a base address of 0x8FFFFFF0.

2.3.3 Private Memory
The private memory definition table is used to program the page table to make the address space assigned
as private to a core; this means memory pages that are cached but non-shared and non-coherent. The way
the table is constructed is through the use of triplets of numerical values. These triplets specify the virtual
base address of a private memory section (the memory pages base address the core sees), the physical base
address of that private memory section (the base address in the physical memory), and the size of the
private memory section. There can be as many triplets as the application requires, therefore the different
private sections of memory do not need to be contiguous.

As an example, let’s take a 4-core device and the application requires each core to have 16Mbyte of private
memory each. Assuming the private memory is seen by each at address 0x80000000, then 4 physical
blocks of 16Mbyte of memory are required; one block per core. The 4 blocks of physical memory reserved
for the private memory are located at addresses 0x80000000, 0x81000000, 0x82000000 and
0x83000000). Once the page table is configured, none of the cores will have access to the memory
located between addresses 0x81000000 to 0x83FFFFFF and each core will have its own private memory
between the addresses 0x80000000 and 0x80FFFFFF.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 13

There are two tables for non-shared memory: the one defined at label The table is referenced by the label
PrivateInfo. Specifies the private (re-mapped) memory regions with caching and the one at lable
NonCprivInfo specifies the private (re-mapped) memory region wit no caching. Both tbales use the same
structure, therefore the explanations provided for the cached / non-shared regions PrivateInfo with
apply to the non-cached / non-shared NonCprivInfo also.

The first entry in a triplet is the number of bytes the block of private memory spans. The second value in a
triplet is the virtual base address of the private memory block. The third entry is the base address of the
physical memory attached to that private memory block. The table must be terminated with a size of 0 for
each core and there must be at least as many zero-size terminated groups as there are cores in the
application (as defined by OS_N_CORE Section 2.2.1).

The example for the private memory definition table is located around line 150 in the file
ARMv8_SMP_L1_L2_GCC.s.

Taking the example described above, the table should be filled as follows:

Table 2-10 Example private memory definition table

PrivateInfo: // Table to define the core private memory area
// --------- SIZE ------ V ADDR -- PH ADDR - // Terminated with 0 Size.
 .8byte 0x01000000, 0x80000000, 0x80000000 // Triplets: Size / Virt addr / Phys addr
 .8byte 0 // Core #0 Non-shared: 0x80000000 mapped to 0x80000000

 .8byte 0x01000000, 0x80000000, 0x81000000
 .8byte 0 // Core #1 Non-shared: 0x80000000 mapped to 0x81000000

 .8byte 0x01000000, 0x80000000, 0x82000000
 .8byte 0 // Core #2 Non-shared: 0x80000000 mapped to 0x82000000

 .8byte 0x01000000, 0x80000000, 0x83000000
 .8byte 0 // Core #3 Non-shared: 0x80000000 mapped to 0x83000000

2.3.4 Overlapping Regions
If the definition tables have by mistake being set with overlapping regions, the final caching property of the
overlapped region is set according to the order the MMU tables are created. If memory regions (physical
addresses for shared, virtual addresses for non-shrared) overlap amongst the 4 type of memory accesses, the
last pass is the one that sets the final MMU table entry:

Ø First pass: Shared / cached

Ø Second pass: Shared / non-cached

Ø Third pass: Non-Shared / cached

Ø Final pass: Non-Shared / non-cached

For example, if a shared / cached memory region overlap the same non-shared / cached virtual memory
region, because the non-shared / cached is the last pass to fill that MMU table entry, the final property is
non-shared / cached.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 14

3 Implementation
The cache configuration performs the following operations in this listed order:

1) Disable SMP.

2) Invalidation of the L1

3) Invalidation of L2 and L3 caches.

4) Enable SMP

5) The page table set-up for the whole memory as default (either invalid or cached and shared)

6) The page table entries are set-up for the specified shared memory (cached)

7) The page table entries are set-up for the specified shared memory (non-cached)

8) The page table entries for the current core specified private memory / cached are set up

9) The page table entries for the current core specified private memory / non-cached are set up

10) The SCU is set-up and enabled

11) The MMU is set-up and enabled

12) The Instruction and Data caches are enabled

When a single L1 MMU table is selected, configured with the build option OS_SAME_L1_PAGE_TBL set to
a non-zero value (Sect 2.2.3), only core #0 performs steps 3), 5), 6) and 7), and as a single L1 MMU table
is selected, steps 8) and 9) are do-nothing steps as both non-shared tables have to be filled with 0s.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 15

4 API
A single function (COREcacheON()) is supplied in this distribution. The following sub-section describes
the COREcacheON() function.

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 16

4.1 COREcacheON

Synopsis
#include “mAbassi.h”

void COREcacheON (void);

Description

COREcacheON() is the module used to configure and enable the L1 and L2 caches, and the
MMU. The build option values needed to set-up the cache as required by the application are
described earlier in this document.

Availability

Optional module.

Arguments
void

Returns
void

Component type

Function

Options

Notes

See also

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 17

4.2 DCacheFlushRange

Synopsis
#include “mAbassi.h”

DCacheFlushRange(void *Addr, int Len);

Description

DCacheFlushRange() is used to flush (write the cache contents in the external RAM) a
range of data addresses from the L1 and L2 cache. The base address to flush is specified
with the argument Addr and the number of consecutive addresses to flush is specified by the
argument Len. As the caches lines are 64 bytes and because only full cache linescan be
flushed, the real start address is the exact multiple by 64 bits address that is lower or equal to
the argument Addr. This also mean the real final address will be the address with an exact
multiple of 64 minus 1, that is greater or equal to (Addr + Len -1).

Availability

Optional module.

Arguments

Addr: Start address (lower) of the memory range to flush from the L1 and L2 cache
Len: Number of consecutive addresses of the memory range to flush from the L1 and

L2 cache.

Returns
void

Component type

Function

Options

Notes

See also

DCacheInvalRange() Section 4.3

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 18

4.3 DCacheInvalRange

Synopsis
#include “mAbassi.h”

DCacheInvalRange(void *Addr, int Len);

Description

DCacheInvalRange() is used to invalidate (to force a re-reading the external memory) a
range of data addresses from the L1 and L2 cache. The base address to invalidate is specified
with the argument Addr and the number of consecutive addresses to invalidate is specified by
the argument Len. As the caches lines are 64 bytes and because only full cache lines can be
invalidated, the real start address is the exact multiple by 64 bits address that is lower or
equal to the argument Addr. This also mean the real final address will be the address with an
exact multiple of 64 minus 1, that is greater or equal to (Addr + Len -1).

Availability

Optional module.

Arguments

Addr: Start address (lower) of the memory range to invalidate from the L1 and L2
cache

Len: Number of consecutive addresses of the memory range to invalidate from the
L1 and L2 cache.

Returns
void

Component type

Function

Options

Notes

See also

DCacheFlushRange() Section 4.2

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 19

4.4 MMUlog2Phy

Synopsis
#include “mAbassi.h”

void *MMUlog2Phy(const void *Addr);

Description

MMUlog2phy() is used report the physical address associated to a logical address. This
information is needed when non-shared memory must be accessed externally from the
processor.

Availability

Optional module.

Arguments

Addr: Logical address to report the physical location

Returns

void * Physical address

Component type

Function

Options

Notes

See also

MMUphy2Log() Section 4.5

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 20

4.5 MMUphy2Log

Synopsis
#include “mAbassi.h”

void *MMUphy2Log(const void *Addr);

Description

MMUphy2Log() is used report the logical address associated to a physcial address. This
information could be useful with non-shared.

Availability

Optional module.

Arguments

Addr: Physical address to report the physical location

Returns

void * Logical address

Component type

Function

Options

Notes

See also

MMUlog2Phy() Section 4.4

mAbassi RTOS BSP – ARMv8 Caches (GCC) 2017.09.30

Rev 1.4 Page 21

5 References
[R1] mAbassi Port – SMP ARM Cortex A53, available at http://www.code-time.com
[R2] Abassi RTOS – User Guide, available at http://www.code-time.com
[R3] mAbassi RTOS – User Guide, available at http://www.code-time.com
[R4] Abassi – ARMv8 Caches

